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Abstract

Federated learning (FL) is an emerging privacy-preserving paradigm, where a
global model is trained at a central server while keeping client data local. However,
FL can still indirectly leak private client information through model updates during
training. Differential privacy (DP) can be employed to provide privacy guarantees
within FL, typically at the cost of degraded final trained model. In this work,
we consider a heterogeneous DP setup where clients are considered private by
default, but some might choose to opt out of DP. We propose a new algorithm for
federated learning with opt-out DP, referred to as FeO2, along with a discussion on
its advantages compared to the baselines of private and personalized FL algorithms.
We prove that the server-side and client-side procedures in FeO2 are optimal for
a simplified linear problem. We also analyze the incentive for opting out of DP
in terms of performance gain. Through numerical experiments, we show that
FeO2 provides up to 9.27% performance gain in the global model compared to
the baseline DP FL for the considered datasets. Additionally, we show a gap in
the average performance of personalized models between non-private and private
clients of up to 3.49%, empirically illustrating an incentive for clients to opt out.

1 Introduction
The abundance of data and advances in computation infrastructure have enabled the training of
high-quality machine learning models. On the other hand, the data is distributed over many devices
that are typically power-constrained and have limited computational capabilities. To reduce the
amount of data transmission over networks and maintain the privacy of raw data, [1] proposed the
federated learning (FL) framework for training a central server-side model using decentralized data
at clients. See the recent surveys [2]; [3] for more. Federated learning frameworks aim to train a
global model iteratively and collaboratively using clients’ data. During each round, the server has
access to a select number of clients, each of whom has a local dataset. The server broadcasts the
current model to such clients, who train the model by taking gradient steps using their local data on
the model and return the gradient-based update back to the server. The server then aggregates the
updates and produces the new global model for the next round.
Despite the clients’ data being kept on device in federated learning, the deployed model at the
central server is still vulnerable to various privacy attacks, such as membership inference attacks,
model inversion attacks, and others. To resolve this issue, many works in the literature propose
privacy-preserving variations of federated learning algorithms. One approach to privacy-preserving
FL algorithms utilizes differential privacy to provide privacy guarantees. Differential privacy is a
widely studied and accepted mathematical notion that describes privacy-preserving algorithms where
the information leakage of private data is bounded. Differential privacy is defined as follows

Definition 1 (differential privacy (DP) [4]). A randomized algorithm A(·), whose image is denoted
as O, is said to be (ε, δ)-DP if for any two inputs D1 and D2 that differ in just one entry, and all
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subsets O ⊆ O the following relationship holds

Pr(A(D1) ∈ O) ≤ eε Pr(A(D2) ∈ O) + δ. (1)

In federated learning, instead of targeting the privacy of individual samples of a client, one can apply
client-level differential privacy by having the adjacent datasets describe the case where the data
removed is all the samples associated with a single client [5]. It is worth noting that using differential
privacy in federated learning causes unavoidable degradation in performance.
Although the trained global model in FL can perform well on average, it is not straightforward
to guarantee the global model performs well for all clients on their local data, especially when
considering heterogeneity in client data. This has encouraged many different works in the literature
to obtain global models that work well for all clients or personalization techniques for federated
learning setups to improve the performance of models at clients.

1.1 Contributions

This work examines heterogeneity in privacy requirements in federated learning setups. It considers
a new setup of privacy-preserving federated learning where privacy is enabled by default and the
clients may choose to opt out. We desire to understand the implications of the setting where a fraction
of the clients choose to opt out of privacy, even if they represent a small percentage of the overall
population, to improve the performance of the global model as well as the personalized local models.
Specifically,

1. We propose a new setup for privacy in federated learning frameworks. The proposed setup
considers heterogeneity in privacy choices of clients in FL. Instead of enabling privacy for
all clients, each client is by default opted in privacy, and given the option to opt out, making
it easier for clients to decide their privacy choices. We consider the client-level notion of
privacy for the set of private clients rather than the entire set of clients.

2. To address this heterogeneity in privacy requirements, we propose the federated learning
with opt-out differential privacy algorithm, referred to as FeO2. The FeO2 algorithm is
designed to take advantage of the newly introduced setup to improve the performance of
the global model. FeO2 comes with a personalization add-on, where we employ a recently-
introduced algorithm, known as Ditto [6], within FeO2 to examine the effect of FeO2 on the
local models.

3. We theoretically investigate FeO2 in a simplified setup of federated point estimation, first
introduced by [6]. We show that the FeO2 algorithm can significantly improve the estimation
noise variance at the server while providing better personalized estimates at clients. We also
establish the Bayes optimality of FeO2 when combined with Ditto.

4. Finally, we provide experimental results of the FeO2 algorithm using various synthetic and
realistic federated datasets from TensorFlow Federated (TFF) [7].

1.2 Related Work

Federated learning has been garnering a huge amount of efforts in the literature over the past few
years. Works on federated learning algorithms have been proposed in the literature to overcome
various issues that arise in realistic federated learning setups, e.g., [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
to name a few. In federated learning, the data generated by clients is not considered to be independent
and identically distributed (IID) as in distributed or centralized learning setups; therefore, the resulting
model at the server may not necessarily perform well on the local data at each client. Personalization
is a solution to this issue. By modifying algorithms to provide clients with better models that perform
well on their local data, see for example, [18, 19, 20, 21, 22, 23, 24, 25, 6].
The trained models in federated learning are vulnerable to various privacy attacks. Differential
privacy has been employed with federated learning in various works in the literature to provide
privacy guarantees for such algorithms. For example, [26, 27, 28] apply DP mechanisms at clients
to ensure sample-level DP guarantees. On the other hand, [29, 5, 30, 31] apply DP mechanisms at
the server to ensure client-level DP guarantees. Applying DP typically causes some degradation
in performance, i.e., the model’s performance degrades as the privacy budget gets smaller. These
approaches to privacy-preserving federated learning use fixed privacy budgets for all clients, an
approach that can be overly strict and cause unnecessary degradation in performance. Our work is
focused on giving clients the option to opt out and utilizing such information at the server to produce
better models. A variation of DP setups is proposed in the literature, for scenarios with clients and a
server, to use a hybrid model by combining sample-level DP with client-level DP and giving clients
the option to opt in either [32, 33].
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2 Privacy & Personalization In Federated Learning
The federated learning setup consists of a central server and a set of clients. The central server
coordinates the training of the model using the clients over multiple training rounds. The set of all
clients, denoted by C, contains all clients that wish to cooperate in training the model. Each client
ci ∈ C has a local dataset, denoted by Di, and a local loss function fi(·). During each communication
round t, the server sends the current model state, i.e., θt, to the set of available clients in that round,
denoted by Ct, who train the model on their local datasets to minimize their local loss functions fi(·).
The clients then return the updated model to the server who aggregates them, e.g., averages them, to
produce the next model state θt+1. Next, we describe an approach for privacy-preserving federated
learning as well as an approach to personalized federated learning. The proposed algorithm FeO2
employs a version of both approaches, and they are considered the two baselines against which FeO2
is examined.

2.1 Privacy-Preserving Federated Learning: DP-FedAvg
To design privacy-preserving federated learning algorithms using differential privacy, a few modifi-
cations are required to the baseline federated averaging algorithm. Specifically, two modifications
are introduced: clipping and noising. Considering client-level privacy, the averaging operation at the
server is the target of such modifications. Assume clients are selected each round with probability
q from the population of all clients of size N . First, each client update is clipped to have norm at
most S, then the average is computed and additive Gaussian noise is added with mean zero and
co-variance σ2I = z2( S

qN )2I . The variable z is referred to as the noise multiplier, which dictates
the achievable values of (ε, δ)-DP. Training the model via multiple rounds increases the amount of
leaked information, the moment accountant method, introduced by [34], can be used to provide a
tighter estimate of the resulting DP parameters (ε, δ).
Selecting the clipping threshold as well as the noise multiplier is instrumental to getting useful
models with desirable privacy guarantees. During training, the norm of updates can either increase
or decrease, if the norm increases or decreases significantly compared to the clipping norm, the
algorithm may slow down or diverge. Hence, [30] presented a solution to privately and adaptively
update the clipping norm during each round of communication in federated learning based on the
feedback from clients on whether or not their update norm exceeded the clipping norm. We consider
this as the baseline for privacy-preserving federated learning algorithm and refer to it in the rest of
the paper as DP-FedAvg. The case where no noise is added is the baseline for non-private federated
learning algorithm, which is referred to simply as non-private.

2.2 Personalized Federated Learning: Ditto
There are multiple approaches to personalization in federated learning as mentioned in the previous
section. In this paper, we consider a recent work by [6], referred to as Ditto, due to its simplicity and
modularity. Ditto is a bi-level optimization objective, which does not modify the global FL training
process, but adds a local training task to personalize a model locally with the following local loss
function:

hi(θi,θ
∗) = fi(θi) +

λi
2
‖θi − θ∗‖2, (2)

where θi is the personalized local model for client ci, λi is the regularization parameter for client ci,
and θ∗ is the global server-side model. As Ditto can simply be added onto the previously described
learning algorithms, we combine it with them to train personalized local models for each client. This
forms the baseline for the personalized learning in both DP-FedAvg and non-private.

3 Federated Learning with Opt-Out Differential Privacy: FeO2
In this section, we describe the FeO2 algorithm that is designed to take advantage of the afore-
mentioned heterogeneous privacy setup. The proposed algorithm is described in Algorithm 1. As
mentioned before, the FeO2 algorithm utilizes differential privacy with adaptive clipping, and option-
ally Ditto for personalized learning.
First, we provide the notation of the variables in the algorithm. We split the set of clients C into
two subsets containing private and non-private clients denoted by Cp and Cnp, respectively. Assume
the number of private and non-private clients is Np = (1 − ρnp)N and Nnp = ρnpN , where ρnp is
the fraction of clients who opt out. The rest of the hyperparameters in the algorithm are as follows:
the ratio hyperparameter r, the noise multipliers z, zb, the clipping sensitivity S, the learning rate at
clients η, the personalized learning rate at clients ηp, quantile κ, and factor ηb. The superscript (·)t is
used to denote a parameter during the t-th training round. During round t of training, no additional
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Algorithm 1 FeO2: Federated learning with opt-out DP

Inputs: model parameters θ0, sensitivity S0, learning rate η, per-
sonalized learning rate ηp, ratio r, noise multipliers z, zb, quantile
κ, and factor ηb.
Outputs: θT , {θj}j∈[N]

At server:
for round t = 0, 1, 2, ..., T − 1 do
Ct ← SampleNt clients from C
for client cj in Ct in parallel do
4θtj , b

t
j ← ClientUpdate(θt, cj , St)

end for
Ntp ← |C

t
p |, Ntnp ← |C

t
np|, zt ← z S

t

Ntp

4θt+1
p ← 1

Ntp

∑
i∈Ctp

4θti +N (0, (zt)2I)

4θt+1
np ← 1

Ntnp

∑
i∈Ctnp

4θti

θt+1 ← θt + 1
Ntnp+rN

t
p
[Ntnp 4 θt+1

np + rNtp 4 θt+1
p ]

St+1 ← Ste
−ηb

(
( 1
Nt

∑
i∈Ct b

t
i+N(0,z2b

1
Nt

2
))−κ

)
end for

At client cj :
ClientUpdate(θ0, cj , S):
θ ← θ0

θj ← θ0 (if not initialized)
B ← batch the client’s data Dj
for epoch e = 1, 2, ..., E do

forB in B do
θ ← θ − η∇fj(θ, B)

θj ← θj − ηp(∇fj(θj , B) + λ(θj − θ0)). [Ditto:
optional for personalization]

end for
end for
4θ ← θ − θ0

b← 1‖4θ‖2≤S
return Clip(4θ, S), b to server

Clip(θ, S):
return θ × S

max(‖θ‖2,S)
to client

steps are required for the clients during model training. Clients train the received model using their
local data then send back their clipped updates ∆θtj along with their clipping indicator btj to the
server. The server collects the updates from clients and performs a two-step aggregation process to
the updates. During the first step, the updates from the non-private clients are passed through an
averaging function to produce4θt+1

np , while the updates from the private clients are passed through a
differentially private-averaging function to produce4θt+1

p . The second step of the aggregation is
combining the outputs of the previous two averaging functions to produce the next iteration of the
model. In this step, the server performs a weighted average of the two outputs. The weights for each
are chosen based on the number of private and non-private clients, as well as a ratio hyperparameter
r. The output of this step is4θt+1, which is then added to the previous model state to produce the
next model state.
The ratio hyperparameter r is chosen based on multiple factors, which we discuss next. In general,
we desire the value of r be bounded as 0 ≤ r ≤ 1 in FeO2 to use non-private clients’ updates more
meaningfully. The first factor to consider when choosing r is related to the desired privacy budget,
lower privacy budget ε requires more noise to be added, leading to a lower value of r. This intuition
follows from observing Lemma 11 in [35] as will be shown in a simplified example in the next section.
Another factor that is more difficult to quantify is the heterogeneity between the non-private set of
clients and the private set of clients, more heterogeneity leads to higher values of r and vice versa.
As for the personalization part, we have the hyperparameter λ. FeO2 differs from Ditto in a number
of major ways. First, The server-side aggregation in Ditto is the vanilla FedAvg; however, in FeO2
the server-side aggregation is not FedAvg, but rather a new aggregation rule which utilizes the privacy
choices made by clients. Second, Ditto is designed for robustness against malicious clients; hence,
the performance on malicious clients is not measured. That is not the case in FeO2, where measuring
the performance for private and non-private clients is needed, and improving both is desired. Third,
the server in Ditto is unaware of the status of the clients, i.e., whether or not they are malicious; while
in FeO2 the server is aware of the privacy choices made by clients which can be used during training.

4 Analyzing Federated Point Estimation
In this section, we provide some insights into the proposed FeO2 algorithm through a simplified
setup, inspired by the one proposed by [6], known as federated point estimation. We first start by
considering the global estimation on the server and show that FeO2 is Bayes optimal when using the
appropriate value of the ratio r. Then we consider personalization using Ditto for both private and
non-private clients and show that combining the optimal FeO2 with Ditto is Bayes optimal for private
and non-private clients when using appropriate values of the regularization parameters λp and λnp.
Finally, we show the gain of opting out in the proposed personalized setup compared to the baseline.
The federated point estimation is presented for clarity of discussion, refer to the extended version for
additional discussions and an extension of the setup to linear regression problems.

4.1 Setup
In this simplified setup, we consider a single round of communication and assume that all clients
have the same number of samples, and that the effect of clipping is negligible. Let ns denote the
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number of samples held by each client. Also, let us denote the point to be estimated at client cj as
φj = φ+ pj , where φ is the parameter to be estimated at the server, pj ∼ N (0, τ2) is the inherent
Gaussian noise, which encompasses the non-IID nature in federated learning setups we are interested
in. Increasing τ2 makes the points more unrelated at different clients, and setting τ2 = 0 denotes
the case of IID clients. The observed samples at client cj are denoted by xj = {xj,1, xj,2, ..., xj,ns},
where xj,i = φj + vj,i, where vj,i ∼ N (0, β2) is the additive noise in the observations. The loss

function at the client is fj(φ) = 1
2

(
φ− 1

ns

∑ns
i=1 xj,i

)2
.

Let α2 = β2

ns
. Then minimizing fj(φ) leads the client to have the estimate φ̂j = 1

ns

∑ns
i=1 xj,i, whose

variance is σ2
c = α2 + τ2. For simplicity and clarity, we move the noise addition process from the

server-side to the client side such that when the server aggregates the private clients’ updates the
resulting privacy noise variance is equivalent to the desired value by the server. Note that the notion
of privacy here is still client-level privacy. We denote the updates sent to the server by client cj as
ψj = φ̂j + lj , where lj = 0 for non-private clients and lj ∼ N (0, Npγ

2) for private clients. Also,
γ2 ∝ 1

N2
p

is the desired privacy noise variance at the server, which is related to the value of z2 in
Algorithm 1. In this setup, the server and clients goals is to minimize the Bayes risk (i.e., test error),
defined as follows:

θ∗ := argmin
θ̂

{
E
[
1

2

(
φ− θ̂

)2∣∣∣∣ψ1, ..., ψN

]}
. (Glob. obj.)

θ∗j := argmin
θ̂

{
E
[
1

2

(
φj − θ̂

)2∣∣∣∣ {ψi : i∈ [N ]\j}, φ̂j
]}

. (Loc. obj.)

4.2 Global Model On The Server
The server’s goal is to combine the updates received from clients such that the resulting noise variance
is minimized, while ensuring the privacy of the set of private clients. To this end, we use Lemma 11
in [35] to find the optimal aggregation at the server. The server first computes the two intermediate
average values for non-private and private clients as θnp = 1

Nnp

∑
i∈Cnp

ψi, and θp = 1
Np

∑
i∈Cp

ψi,
where θnp ∼ N (φ, 1

Nnp
σ2
c ), and θp ∼ N (φ, 1

Np
σ2
c +γ2). Now, the server aims to combine such values

to compute its estimation θ of the value of φ with the goal of minimizing the resulting estimation
noise variance σ2

s .
Lemma 1 (Global estimate optimality). FeO2 from the server’s point of view, with ratio r∗ =

σ2
c

σ2
c+Npγ2 , is Bayes optimal (i.e., θ converges to θ∗) in the considered federated point estimation

problem. Furthermore, the resulting variance is σ2
s,opt = 1

N

[
σ2
c(σ

2
c+Npγ

2)
σ2
c+ρnpNpγ2

]
.

4.3 Personalized Local Models On Clients
In this part, we consider using Ditto to train personalized local models at clients. We show that
combining Ditto with FeO2 provides the Bayes optimal local model for clients. We first note that in
vanilla Ditto, the server applies vanilla FedAvg to produce the global model, while in FeO2 with Ditto
the server utilizes the side-information available to it about the privacy choices of clients to optimally
aggregates their updates. Due to the server aggregation being different in these two algorithms, the
resulting optimum λ’s will also be different for clients in each algorithm. Additionally, as FeO2 aims
to provide optimal performance for both private and non-private clients, we need to find the optimal
values of both λnp and λp. Next, we discuss the optimality of Ditto combined with FeO2 using the
estimate θ∗ for both private and non-private clients in the federated point estimation problem. To this
end, we have the following lemma.
Lemma 2 (Personalized local estimate optimality). Assuming using Ditto combined with FeO2 with
ratio r∗ in Lemma 1, there exist λ∗np for non-private clients and λ∗p for private clients such that FeO2
is Bayes optimal (i.e., θj converges to θ∗j for each client j ∈ [N ]).

Expressions of λ∗np and λ∗p along with the corresponding proofs are provided in the extended version.

4.4 Incentive for Opting Out of DP
Earlier in this section, we have shown that for the problem of federated point estimation, the global
estimate benefited greatly from the setup of opt-out differential privacy. A better global estimate
enables better performance on clients’ devices in the federated point estimation setup. However, a
question may arise on whether or not clients are actually going to opt out of privacy. In other words,
what incentivizes clients to opt out other than helping the server produce better estimates?
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Figure 1: The effect of opting out on the personalized local model estimate as a function of λ.

Table 1: Summarized results of experiments on synthetic datasets: We compare the performance of the baseline
algorithms against FeO2 with the hyperparameters that perform best. The variance of the performance metric
across clients is between parenthesis.

nonIID MNIST dataset, (3.6, 10−4)-DP
Setup Global model Personalized local models

Algorithm hyperparameters Accg% Accg,p% Accg,np% 4g% Accl,p% Accl,np% 4p%

Non-private λnp =0.005 93.8 - 93.75(0.13) - - 99.98(0.001) -
DP-FedAvg λp =0.005 88.75 88.64(0.39) - - 99.97(0.002) - -

FeO2 r=0.01,
λp =λnp =0.005

92.48 92.43(0.30) 93.30(0.21) 0.88 99.94(0.001) 99.94(0.001) 0.0

Skewed nonIID MNIST dataset, (3.6, 10−4)-DP
Non-private λnp =0.005 93.67 - 93.62(0.15) - - 99.98(0.001) -
DP-FedAvg λp =0.005 88.93 88.87(0.35) - - 99.98(0.001) - -

FeO2 r=0.1,
λp =λnp =0.005

90.36 89.96(0.37) 97.45(0.01) 7.49 99.97(0.001) 99.76(0.003) −0.21

FeO2 r=0.9,
λp =λnp =0.005

87.96 87.69(0.56) 92.97(0.04) 5.28 99.98(0.001) 99.96(0.001) −0.02

To answer this question, we argue that opting out helps the server produce better global estimates
for clients, in addition to helping clients produce better personalized local estimates. In other words,
clients that opt out can produce better personalized local estimates compared to the ones that remain
private. To illustrate the motivation of opting out for clients, we perform an experiment where we
conduct the federated point estimation experiment for two scenarios. The first is the case where client
ck remains private, and the second is the case where ck opts out of privacy and becomes non-private.
The results of these experiments are shown in Figure 1. This illustrates the incentive for clients to opt
out of privacy.

5 Experimental Evaluation
In this section, we present the results of a number of experiments to show the gain in performance
of the proposed FeO2 algorithm compared to the baseline DP-FedAvg algorithm. The experiments
show that FeO2 outperforms DP-FedAvg with the right choice of the hyperparameter r in terms of
the global model accuracy, as well as in terms of the average personalized local model accuracy.

5.1 Setup
The experiments are conducted on multiple federated datasets, synthetic and realistic. The synthetic
datasets are manually created to simulate extreme cases of data heterogeneity often exhibited in
federated learning scenarios. The realistic federated datasets are from TFF [7], where such datasets
are assigned to clients according to some criteria. The synthetic dataset is referred to as the non-IID
MNIST dataset, and the number of samples at a client is fixed across all clients. Each client is
assigned samples randomly from the subsets of samples each with a single digit between 0−9.
A skewed version of the synthetic dataset is one where non-private clients are sampled from the
clients who have the digit 7 in their data. In the non-IID MNIST dataset, we have 2, 000 clients and
we randomly sample 5% of them for training each round. The realistic federated datasets are the
FMNIST and FEMNIST from TFF datasets. The FMNIST and FEMNIST datasets contain 3, 383
and 3, 400 clients, respectively, and we sample 3% of them for training each round. TensorFlow
Privacy (TFP) [36] is used to compute the privacy loss incurred during training. Refer to the extended
version for more extended description of the used models and extended results.

5.2 Results
In this part, we provide the outcomes of the experiments on the datasets mentioned above. In these
experiments, we provide results for an opt-out rate of 5% of the total client population. Clients that
opt out are picked randomly from the set of all clients but fixed for a fair comparison across all
experiments. The exception for this assumption is for the skewed non-IID MNIST dataset, where
clients that opt out are sampled from the clients who have the digit 7. All other hyperparameters are
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Table 2: Summarized results of experiments on realistic federated datasets: We compare the performance of the
baseline algorithms against FeO2 with the hyperparameters that perform best. The variance of the performance
metric across clients is between parenthesis.

FMNIST dataset, (0.6, 10−4)-DP
Setup Global model Personalized local models

Algorithm hyperparameters Accg% Accg,p% Accg,np% 4g% Accl,p% Accl,np% 4p%

Non-private λnp =0.05 89.65 - 89.35(1.68) - - 94.53(0.59) -
DP-FedAvg λp =0.05 77.61 77.62(2.55) - - 90.04(1.04) - -

FeO2 r=0.01,
λp = 0.05, λnp = 0.005

86.88 85.36(1.89) 90.02(1.28) 4.66 93.76(0.68) 95.94(0.41) 2.18

FEMNIST dataset, (4.1, 10−4)-DP
Non-private λnp =0.25 81.66 - 81.79(1.38) - - 84.46(0.89) -
DP-FedAvg λp =0.05 75.42 75.86(1.82) - - 74.69(1.29) - -

FeO2 r=0.1,
λp = λnp = 0.05

76.52 77.91(1.67) 83.9(1.27) 5.99 77.9(1.22) 79.15(0.99) 1.25

FeO2 r=0.01,
λp = λnp = 0.25

74.86 77.31(2.18) 86.73(0.98) 9.42 81.19(1.02) 84.68(0.78) 3.49

fixed. To evaluate the performance of each algorithm, we measure the following quantities for each
dataset:

• Accg: the average test accuracy on the server test dataset using the global model.
• Accg,p, Accg,np: the average test accuracy of all private and non-private clients using the

global model on their local test datasets, respectively.
• Accl,p, Accl,np: the average test accuracy of all private and non-private clients using their

personalized local models on their local test datasets, respectively.
• 4g, 4l: the gain in the average performance of non-private clients over the private ones

using the global model and the personalized local models on their local test datasets,
respectively; computed as4g = Accg,np −Accg,p and4l = Accl,np −Accl,p.

A summary of the results, shown in Table 1 and Table 2, provides the best performance for each
experiment along with their corresponding hyperparameters. More detailed results are shown
in the extended version. If different values of the hyperparameters in FeO2 yield two different
competing results, such as one with better global model performance at the server and one with better
personalized local models at the clients, we show both.

We can see from Tables 1 and 2 that FeO2 allows the server to learn better global models while
allowing clients to learn better personalized local models compared to the baseline private FL, i.e.,
DP-FedAvg. For example, the gain due to FeO2 compared to the DP-FedAvg in terms of global
model performance is 3.8% on average and is up to 9.27%. For personalized local models, the
gain in average accuracy for clients due to FeO2 compared to DP-FedAvg is up to 9.99%. The gap
in the average performance of personalized local models between DP-FedAvg and non-private is
3.57%, which is reduced to 0.95% between FeO2 and non-private. Additionally, we can also see
the gain in the average performance in personalized local models between clients who choose to
opt out of privacy and clients who choose to remain private. This demonstrates the advantage of
opting out, which provides clients with an incentive to opt out of differential privacy to improve their
personalized local models, for example, non-private clients can gain up to 3.49% on average in terms
of personalized local model performance compared to private clients. It is worth mentioning that
opting out can also improve the global model’s performance on clients’ local data. We observe that
there is up to 12.4% gain in the average performance of non-private clients in terms of the accuracy
of the global model on the local data compared to the one of baseline DP-FedAvg.

6 Conclusion
In this paper, we considered a new aspect of heterogeneity in federated learning setups, namely
heterogeneity in privacy requirements. We proposed a new setup for privacy heterogeneity between
clients where privacy is no longer necessary for all clients, and some clients choose to opt out of
privacy. We proposed a new algorithm called FeO2 for the considered setup. In FeO2, the aim
is to employ differential privacy to maintain the privacy of clients who choose to remain private,
and we proposed a two-step aggregation scheme at the server to improve utility. Additionally, we
employed Ditto as a personalization scheme to examine whether FeO2 enhances the performance for
personalized FL. We provided a treatment for the federated point estimation problem and showed the
success of FeO2 on the central server as well as the personalized local models. Finally, we provided a
set of experiments on synthetic and realistic federated datasets and showed that FeO2 outperforms the
baseline private FL algorithm in terms of the global model as well as the personalized local models
performance, and showed the incentive of becoming non-private compared to remaining private in
such scenarios in terms of the gain in the average performance.
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[8] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimiza-
tion: Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527,
2016.

[9] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

[10] Luca Corinzia, Ami Beuret, and Joachim M Buhmann. Variational federated multi-task learning.
arXiv preprint arXiv:1906.06268, 2019.

[11] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127,
2018.

[12] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical
data distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

[13] Hangyu Zhu and Yaochu Jin. Multi-objective evolutionary federated learning. IEEE transactions
on neural networks and learning systems, 31(4):1310–1322, 2019.

[14] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pages 5132–5143. PMLR, 2020.

[15] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
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