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Abstract

Federated learning is an established method for training machine learning models
without sharing training data. However, recent work has shown that it cannot
guarantee data privacy as shared gradients can still leak sensitive information. To
formalize the problem of gradient leakage, we propose a theoretical framework
that enables, for the first time, analysis of the Bayes optimal adversary phrased
as an optimization problem. We demonstrate that existing leakage attacks can be
seen as approximations of this optimal adversary with different assumptions on the
probability distributions of the input data and gradients. Our experiments confirm
the effectiveness of the Bayes optimal adversary when it has knowledge of the
underlying distribution. Further, our experimental evaluation shows that several
existing heuristic defenses are not effective against stronger attacks, especially
early in the training process. Thus, our findings indicate that the construction of
more effective defenses and their evaluation remains an open problem.

1 Introduction

Federated learning [12] has become a standard paradigm for enabling users to collaboratively train
machine learning models. In this setting, clients compute updates on their own devices, send the
updates to a central server which aggregates them and updates the global model. Because user data is
not shared with the server or other users, this framework should, in principle, offer more privacy than
simply uploading the data to a server. However, this privacy benefit has been increasingly questioned
by recent works [4, 13, 21, 23] which demonstrate the possibility of reconstructing the original
input from shared gradient updates. The reconstruction works by optimizing a candidate image
with respect to a loss that measures the distance between the shared and candidate gradients. The
attacks typically differ in their loss function, their regularization, and how they solve the optimization
problem. Importantly, the success of these attacks raises the following key questions: (i) what is the
theoretically worst-case attack?, and (ii) how do we evaluate defenses against gradient leakage?

This work In this work, we study and address these two questions from a statistical perspective.
Specifically, we introduce a theoretical framework which allows us to measure the expected risk an
adversary has in reconstructing an input, given the joint probability distribution of inputs and their
gradients. We then analyze the Bayes optimal adversary, which minimizes this risk and show that it
solves a specific optimization problem involving the joint distribution. Further, we phrase existing
attacks [4, 21, 23] as approximations of this optimal adversary, where each attack can be interpreted
as implicitly making different assumptions on the distribution of gradients and inputs, in turn yielding
different loss functions for the optimization. In our experimental evaluation, we compare the Bayes
optimal adversary with other attacks, those which do not leverage the probability distribution of
gradients, and we find that the Bayes optimal adversary performs better, as explained by the theory.
We also experiment with several recently proposed defenses [3, 16, 17] based on different heuristics
and demonstrate that they are not sufficient for protecting from gradient leakage against stronger
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attacks we design specifically for each defense. Interestingly, we find that models are especially
vulnerable to attacks early in training, thus we advocate that defense evaluation should take place
during and not only at the end of training. Overall, our findings suggest that creation of effective
defenses and their evaluation is a challenging problem, and that our insights and contributions can
substantially advance future research in the area.

Main contributions Our main contributions are:

• Formulation of the gradient leakage problem in a Bayesian framework which enables
phrasing Bayes optimal adversary as an optimization problem.

• Interpretation of several prior attacks as approximations of the Bayes optimal adversary,
each using different assumptions for the distributions of inputs and their gradients.

• Evaluation of several existing heuristic defenses demonstrating that they do not effectively
protect from strong attacks, especially early in training.

2 Related work

We now briefly survey some of the work most related to ours.

Federated Learning Federated learning [12] was introduced as a way to train machine learning
models in decentralized settings with data coming from different user devices. This new form of
learning has caused much interest in its theoretical properties [8] and ways to improve training
efficiency [9]. More specifically, besides decentralizing the computation on many devices, the
fundamental promise of this approach is privacy, as the user data never leaves their devices.

Gradient Leakage Attacks Recent work [4, 23] has shown that such privacy assumptions, in
fact, do not hold in practice, as an adversarial server can reliably recover an input image given
gradient updates. They phrase the attacks as a minimization problem over the `2-distance between
the gradients of a randomly initialized input image x′ and a target image x on a neural network hθ:

(x∗, y∗) = argmin
(x′,y′)

||∇l(hθ(x), y)−∇l(hθ(x′), y′)||2 (1)

Here l denotes a loss used to train the network, usually cross-entropy, while y and y′ correspond
to the original and reconstructed label, respectively. Follow-up works improve on these results
by using different distance metrics such as cosine similarity and input-regularization [4], smarter
initialization [19], normalization [21], and others [5, 14]. A significant improvement proposed
by [22] showed how to recover the target label y from the gradients alone, reducing Eq. (1) to an
optimization over x′ only. In Section 4 we show how these existing attacks can be interpreted as
different approximations of the Bayes optimal adversary.

Defenses In response to the rise of privacy-violating attacks on federated learning, many defenses
have been proposed [1, 3, 17]. Except for DP-SGD [1], a version of SGD with clipping and adding
Gaussian noise, which is differentially private, they all provide none or little theoretical privacy
guarantees. This is partly due to the fact that no mathematically rigorous attacker model exists,
and defenses are empirically evaluated against known attacks. This also leads to a wide variety of
proposed defenses: Soteria [17] prunes the gradient for a single layer, ATS [3] generates highly
augmented input images that train the network to produce non-invertible gradients, and PRECODE
[16] uses a VAE to hide the original input. Here we do not consider defenses that change the
communication and training protocol [11, 20].

3 Background

Let X ⊆ Rd be an input space, and let hθ : X → Y be a neural network with parameters θ classifying
an input to a label in the label space Y . We assume that inputs (x, y) are coming from a distribution
D with a marginal distribution p(x). In standard federated learning, there are n clients with loss
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functions l1, ..., ln, who are trying to collaboratively solve the following optimization problem:

min
θ

1

n

n∑
i=1

E(x,y)∼D [li(hθ(x), y)] .

To ease the notation, we will assume a single client throughout the paper, but the same reasoning can
be applied to the general n-client case. Additionally, each client could have a different distribution
D, but the approach is again easy to generalize to this case. In a single training step, each client i
first computes∇θli(hθ(xi), yi) on a batch of data (xi, yi), then sends these to the central server that
performs a gradient descent step to obtain the new parameters θ′ = θ − α

n

∑n
i=1∇θli(hθ(xi), yi),

where α is a learning rate. We will consider a scenario where each client reports, instead of the
true gradient∇θli(hθ(xi), yi), a noisy gradient g sampled from a distribution p(g|x), which we call
a defense mechanism. The purpose of the defense mechanism is to add enough noise to hide the
sensitive user information from the gradients while retaining high enough informativeness so that
it can be used for training. Thus, given some noisy gradient g, the central server would update the
parameters as θ′ = θ − αg (assuming n = 1 as mentioned above). Typical examples of defenses used
in our experiments in Section 6, each inducing p(g|x), include adding Gaussian or Laplacian noise
to the original gradients, as well as randomly masking some components of the gradient. Naturally,
p(x) and p(g|x) together induce a joint distribution p(x, g). Note that a network that has no defense
corresponds to the distribution p(g|x), which is concentrated only on the true gradient at x.

4 Bayesian adversarial framework

Here we describe our theoretical framework for gradient leakage in federated learning.

Adversarial risk We first define the adversarial risk for gradient leakage and then derive the
Bayes optimal adversary that minimizes this risk. The adversary can observe the gradient g and is
trying to reconstruct the input x that produced this gradient. Formally, the adversary is a function
f : Rk → X mapping gradients to inputs. Given some (x, g) sampled from the joint distribution
p(x, g), the adversary outputs the reconstruction f(g) and incurs loss L(x, f(g)), which is a function
L : X × X → R. Typically, we will consider a binary loss that evaluates to 0 if the adversary’s
output is close to the original input, and 1 otherwise. If the adversary wants to reconstruct the exact
input x, we can define the loss to be L(x, x′) := 1x 6=x′ , denoting with 1 the indicator function. If
the adversary only wants to get to some δ-neighbourhood of the input x in the input space, a more
appropriate definition of the loss is L(x, x′) := 1d(x,x′)>δ. In this section, we will assume that the
distance d is the `2-distance, but the approach can be generalized to other notions as well. This
definition is well suited for image data, where `2 distance captures our perception of visual closeness,
and for which the adversary can often obtain a reconstruction that is very close to the original image,
both visually and in the `2 space. Note that if we let δ approach 0 in our second definition of the loss,
we essentially recover the first loss. We can now define the risk R(f) of the adversary f as

R(f) := Ex,g [L(x, f(g))] = Ex∼p(x)Eg∼p(g|x) [L(x, f(g))] .

Bayes optimal adversary We consider white-box adversary who knows the joint distribution
p(x, g), as opposed to the weaker alternative based on security through obscurity, where adversary
does not know what defense is used, and therefore does not have a good estimate of p(x, g). We
also do not consider adversaries that can exploit other vulnerabilities in the system to obtain extra
information. Let us consider the second definition of the loss for which L(x, f(g)) := 1||x−f(g)||2>δ .
We can then rewrite the definition of the risk as follows:

R(f) = Ex,g [L(x, f(g))]
= EgEx|g

[
1||x−f(g)||2>δ

]
= Eg

∫
X
p(x|g) · 1||x−f(g)||2>δ dx

= Eg
∫
X\B(f(g),δ)

p(x|g) dx

= 1− Eg
∫
B(f(g),δ)

p(x|g) dx.
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Figure 1: Example of a gradient leakage attack. Bayes optimal adversary randomly initializes image
x1 and then optimizes for the image with the highest log p(g|x) + log p(x) in its δ-neighborhood.
The adversary has loss 1 if the final reconstruction is outside the ball B(xorig, δ), and 0 otherwise.

Here B(f(g), δ) denotes the `2-ball of radius δ around f(g). Thus, an adversary which wants to
minimize their risk has to maximize Eg

∫
B(f(g),δ)

p(x|g) dx, meaning that the adversarial function f
can be defined as f(g) := argmaxx0

∫
B(x0,δ)

p(x|g) dx. Intuitively, the adversary predicts x0 which
has the highest likelihood that one of the inputs in its δ-neighborhood was the original input that
produced gradient g. Note that if we would let δ → 0, then f(g)→ argmaxx p(x|g), which would
be the solution for the loss that requires the recovered input to exactly match the original input. As
we do not have the closed form for p(x|g), it can be rewritten using Bayes’ rule:

f(g) = argmax
x0∈X

∫
B(x0,δ)

p(x|g) dx

= argmax
x0∈X

∫
B(x0,δ)

p(g|x)p(x)
p(g)

dx

= argmax
x0∈X

∫
B(x0,δ)

p(g|x)p(x) dx

= argmax
x0∈X

[
log

∫
B(x0,δ)

p(g|x)p(x) dx

]
(2)

The last steps follow from multiplying by the constant p(g) and taking the logarithm, both not
affecting the argmax. Computing the optimal reconstruction now requires evaluating both the input
prior p(x) and the conditional probability p(g|x), which is determined by the used defense mechanism.
Given these two ingredients, Eq. (2) then provides us with a way to compute the output of the Bayes
optimal adversary by solving an optimization problem involving distributions p(x) and p(g|x).

Algorithm 1 Approximate Bayes optimal adversary

x← attack_init()
for i = 1 to m do

Sample x1, ..., xk uniformly from B(x, δ)

x← x+ α∇x 1
k

∑k
i=1 log p(g|xi) + log p(xi)

end for
return x

Approximate Bayes optimal adversary
While Eq. (2) provides a formula for the
optimal adversary in the form of an op-
timization problem, using this adversary
for practical reconstruction is difficult due
to three main challenges: (i) we require
knowledge of the prior distribution p(x),
(ii) computing the integral over the δ-ball
around x0 is generally not tractable, and
(iii) we need to solve the optimization prob-
lem over X . However, we can address each
of these challenges by introducing appro-
priate approximations. We first apply Jensen’s inequality to the logarithm function:

max
x0∈X

[
log

∫
B(x0,δ)

p(g|x)p(x) dx

]
≥ max
x0∈X

[∫
B(x0,δ)

log p(g|x) + log p(x)

]
.

For image data, we approximate the prior distribution using the total variation image prior, which has
already worked well for gradient inversion [4]. Alternatively, we could estimate it from data using
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Attack Prior p(x) Conditional p(g|x)
DLG [23] Uniform Gaussian
Inverting Gradients [4] TV Cosine
GradInversion [21] TV + Gaussian + DeepInv Gaussian

Table 1: Several existing attacks can be interpreted as instances of our Bayesian framework. We show
prior and conditional distribution for corresponding losses that each attack uses.

density estimation models such as PixelCNN [18] or Glow [7]. We then approximate the integral
over the δ-ball via Monte Carlo integration by sampling k points x1, ..., xk uniformly inside the ball.
Finally, as the objective is differentiable, we can use gradient-based optimizer such as Adam [6], and
obtain the attack in Algorithm 1. Fig. 1 shows a single run of this adversary which is initialized
randomly, and gets closer to the original image at every step.

Existing attacks as approximations of the Bayes optimal adversary We now describe how
existing attacks can be viewed as different approximations of the Bayes optimal adversary. Recall
that the optimal adversary f searches for the δ-ball with the maximum value of the integral of
log p(g|x) + log p(x). Previously proposed attacks can in fact be recovered by plugging in different
approximations for log p(g|x) and log p(x) into Algorithm 1, with estimating the integral using
k = 1 sample located at the center of the ball. For example, suppose that the defense mechanism
adds Gaussian noise to the original gradient, which corresponds to the conditional probability
p(g|x) = N (∇θl(hθ(x), y), σ2I). This implies that log p(g|x) = C − 1

2σ2 ||g − ∇θl(hθ(x), y)||22,
where C is a constant. Assuming a uniform prior (where log p(x) is constant), the optimization
problem in Eq. (2) boils down to minimizing `2 distance between g and ∇θl(hθ(x), y), which is
exactly the optimization problem solved by Deep Leakage from Gradients (DLG) [23]. Inverting
Gradients [4] uses a total variation (TV) image prior for log p(x) and cosine similarity instead
of `2 to measure similarity between gradients. Cosine similarity corresponds to the distribution
log p(g|x) = C − gT∇θl(hθ(x),y)

||g||2||∇θl(hθ(x),y)||2 which also requires the support of the distribution to be
bounded (this happens, e.g., when gradients are clipped). GradInversion [21] introduces a more
complex prior based on a combination of the total variation, `2 norm of the image, and a DeepInversion
prior while using l2 norm to measure distance between gradients, which corresponds to Gaussian
noise, as observed before. We summarize these observations in Table 1.

5 Attacking existing defenses

In this section we provide practical attacks against three recent defenses, showing that they are
generally not able to withstand stronger adversaries early in training. While in Section 4 we have
shown that Bayes optimal adversary is the optimal attack for any defense (each inducing different
p(g|x)), computing it is not tractable for the three defenses we consider. Here, it is more efficient to
create a custom attack tailored to each defense, which is enough to break their privacy promise.

Soteria The Soteria defense [17] perturbs the intermediate representation of the input at a chosen
defended layer l of the attacked neural network H : Rn0 → RnL with L layers of size n1, . . . , nL
and input size n0. Let X and X ′ ∈ Rn0 denote the original and reconstructed images on H and
hi,j : Rni → Rnj denote the function between the input of the ith layer of H and the output of the
jth. For the chosen layer l, Sun et al. [17] denotes the inputs to that layer for the images X and X ′
with r = h0,l−1(X) and r′ = h0,l−1(X

′), respectively, and aims to solve

max
r′
||X −X ′||2 s.t. ||r − r′||0 ≤ ε. (3)

Intuitively, Eq. (3) is searching for a minimal perturbation of the input to layer l that results in
maximal perturbation of the respective reconstructed input X ′. Despite the optimization being over
the intermediate representation r′, for an attacker who observes neither r nor r′ the defense amounts
to a perturbed gradient at layer l. In particular let ∇W = {∇W1,∇W2, . . .∇WL} be the set of
gradients for the variables in the different layers of H . Sun et al. [17] first solves Eq. (3) to obtain r′.
It afterwards uses this r′ to generate a perturbed gradient at layer l denoted with ∇W ′l . Notably r′
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Figure 2: PSNR obtained by reconstruction attacks on ATS and Soteria during the first 1000 steps
and 10 epochs, respectively, demonstrating high gradient leakage early in training.

is not propagated further through the network and hence the gradient perturbation stays local to the
defended layer l. Hence, to defend the data X , Soteria’s clients send the perturbed set of gradients
∇W ′ = {∇W1, . . . ,∇Wl−1,∇W ′l ,∇Wl+1, . . .∇WL} in place of ∇W . Sun et al. [17] show that
Soteria is safe against several attacks from prior work [4, 23].

In this work, we propose to circumvent this limitation by dropping the perturbed gradients ∇W ′l
from ∇W ′ to obtain ∇W ∗ = {∇W1, . . . ,∇Wl−1,∇Wl+1, . . .∇WL}. As long as ∇W ∗ contains
enough gradients, this allows an attacker to compute an almost perfect reconstruction of X . Note that
the attacker does not know which layer is defended, but can simply run the attack for all.

Automated Transformation Search The Automatic Transformation Search (ATS) [3] attempts to
hide sensitive information from input images by augmenting the images during training. The key
idea is to score sequences of roughly 3 to 6 augmentations from AutoAugment library [2] based on
the ability of the trained network to withstand gradient-based reconstruction attacks and the overall
network accuracy. Similarly to Soteria, Gao et al. [3] also demonstrate that ATS is safe against
attacks proposed by Zhu et al. [23] and Geiping et al. [4]. In this work we show that, even though the
ATS defense works well in later stages of training, in initial communication rounds we can easily
reconstruct the input images using Geiping et al. [4]’s attack.

PRECODE PRECODE [16] is a proposed defense which inserts a variational bottleneck between
two layers in the network. Given an input x, PRECODE first encodes the input into a representation
z = E(x), then samples bottleneck features b ∼ q(b|z) from a latent Gaussian distribution. Then,
they compute new latent representation ẑ = D(b), and finally obtain the output ŷ = O(ẑ). For this
defense we focus on an MLP network, which [16] evaluates against several attacks and shows that
images cannot be recovered. Our attack is based on the approach from [15], which shows that in
most cases the inputs to an MLP can be perfectly reconstructed from the gradients.

6 Experimental evaluation

We now evaluate existing defenses and practical implementation of the Bayes optimal adversary.

Evaluating existing defenses In this experiment, we evaluate the three recently proposed defenses
described in Section 5: Soteria [17], ATS [3], and PRECODE [16] on the CIFAR-10 dataset [10].
For ATS and Soteria, we use the code from their respective papers. In particular, we evaluated ATS
on their ConvNet implementation, a network with 7 convolutional layers, batch-norm, and ReLU
activations followed by a single linear layer. We consider 2 different augmentation strategies for
ATS, as well as a hybrid strategy. For Soteria, we evaluate our own network architecture with 2
convolutional and 3 linear layers. The defense is applied on the largest linear layer. We provide
additional details on the hyperparameters used for this experiment in Appendix A.2.

The results of this experiment are shown in Fig. 2. We attack ATS for the first 1000 steps of training
and Soteria for the first 10 epochs, measuring Peak signal-to-noise ratio (PSNR) of the reconstruction
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Figure 3: Images obtained by running attacks on Soteria, ATS, and PRECODE on the CIFAR-10
dataset after 10-th training step, showing that defenses do not protect privacy early in the training.

obtained using our attack at every step. In all of our PRECODE experiments we obtain perfect
reconstruction with PSNR values > 150 so we do not show PRECODE on the plot. We can observe
that, generally, each network becomes less susceptible to the attack with the increased number
of training steps. However, early in training, networks are very vulnerable, and images can be
reconstructed almost perfectly. Fig. 3 visualizes the first 40 reconstructed images obtained using our
attacks on Soteria, ATS and PRECODE. We can see that for all defenses, our reconstructions are very
close to their respective inputs. This indicates that proposed defenses do not reliably protect privacy
under gradient leakage, especially in earlier stages of training. Our findings suggest that creating
effective defenses and properly evaluating them remains a key challenge.
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Figure 4: Ablation with the Bayes optimal attack.

Approximations of Bayes optimal adversary
In this experiment, we compare the Bayes opti-
mal adversary with attacks that have suboptimal
approximations of p(g|x) and p(x). As vision
datasets have complex priors p(x) which we
cannot compute exactly, for this experiment, we
consider a synthetic dataset where p(x) is 20-
dimensional unit Gaussian. We define the true
label y := argmax(Wx) where W is a fixed
random matrix, and perform an attack on a 2-
layer MLP defended by adding Laplacian noise
with a 0.1 scale. Thus, p(x) is a Gaussian, and
p(g|x) is Laplacian. In this study, we consider
4 different variants of the attack, obtained by
choosing Laplacian or Gaussian for prior and
conditional. In Fig. 4 for each attack, we show the distance from the original input for 200 steps. We
can observe that Bayes optimal attack (with Gaussian prior and Laplacian conditional) converges
significantly closer to the original input than the other attacks, as predicted by the theory in Section 4.

7 Conclusion

We proposed a theoretical framework to formally analyze the problem of gradient leakage, which has
recently emerged as an important privacy issue for federated learning. Our framework enables us to
analyze the Bayes optimal adversary for this setting and phrase it as an optimization problem. We in-
terpreted several previously proposed attacks as approximations of the Bayes optimal adversary, each
approximation implicitly using different assumptions on the distribution over inputs and gradients.
Our experimental evaluation shows that the Bayes optimal adversary is effective in scenarios in which
it knows the underlying distribution. We also experimented with several proposed defenses based
on heuristics and found that they do not offer effective protection against stronger attacks. Given
our findings, we believe that formulating an effective defense that balances accuracy and protection
against gradient leakage during all stages of training remains an exciting open challenge.
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[8] Jakub Konečný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated
optimization: Distributed machine learning for on-device intelligence. CoRR, abs/1610.02527,
2016.
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