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Abstract

In federated learning, model personalization can be a very effective strategy to deal
with heterogeneous training data across clients. We introduce WAFFLE (Weighted
Averaging For Federated LEarning), a personalized collaborative machine learning
algorithm that leverages stochastic control variates for faster convergence. WAFFLE
uses the Euclidean distance between clients’ updates to weigh their individual
contributions and thus minimize the personalized model loss on the specific agent
of interest. Through a series of experiments, we compare our new approach to two
recent personalized federated learning methods—Weight Erosion and APFL—as
well as two general FL methods—Federated Averaging and SCAFFOLD. Perfor-
mance is evaluated using two categories of non-identical client data distributions—
concept shift and label skew—on two image data sets (MNIST and CIFAR10). Our
experiments demonstrate the comparative effectiveness of WAFFLE, as it achieves
or improves accuracy with faster convergence.

1 Introduction

Federated learning (FL) is a collaborative learning technique to build machine learning (ML) models
from data distributed among several participants ("agents"). The objective is to generate a common,
robust model not by exchanging the data between agents, but rather through exchanging parameter
updates for the common model that all agents share at a certain frequency. This technique addresses
some major problems of centralized data-sharing approaches, can enable data privacy and security
and is therefore attractive to many applications with sensitive data.

We consider centralized FL, in which a single server orchestrates the execution of the algorithms.
Each iteration of learning can thus be divided into four main steps. Firstly, the central server sends
the current model to all agents. Secondly, each agent trains the model with their data and, thirdly,
sends the updated model parameters back to the central server. Finally, the central server aggregates
these results and generates a new global model. WAFFLE intervenes in this last step: instead of a
global one-size-fits-all model, the aggregation produces a personalized model for each specific agent.

1.1 Control Variates for Heterogeneous Data

Federated learning develops a common model for all agents, typically under the assumption that
data is independent and identically distributed (IID) across agents. In real-world applications, this
assumption rarely holds, and thus the convergence rate and final performance of FL algorithms like
Federated Averaging (FedAvg) can vary significantly [McMahan et al., 2017, Karimireddy et al.,
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2020]. Karimireddy et al. [2020] introduce SCAFFOLD, which uses stochastic control variates (SCV)
to tackle the client-drift that results from non-IID-ness across agents. Each agent maintains an SCV
estimating the sum of all other agents’ gradients, and uses it to “correct” each step of stochastic
gradient descent (SGD). Compared to FedAvg, SCAFFOLD converges faster and towards a better
model. WAFFLE extends SCAFFOLD to collaboratively train a personalized ML model.

1.2 Model Personalization

A complementary solution for dealing with non-IID data is to train a unique (personalized) model
for each agent, rather than a single global model. Recently, there have been several key works on
personalization in federated learning, see e.g. Kulkarni et al. [2020] for an overview. Some methods
of adapting global models for individual agents are summarized in Kairouz et al. [2019], such as
local fine-tuning [Deng et al., 2020, Kairouz et al., 2019], multi-task learning [Smith et al., 2017],
and model-agnostic meta-learning (MAML) [Finn et al., 2017, Fallah et al., 2020].

The model personalization method most similar to WAFFLE is Weight Erosion (WE) [Grimberg
et al., 2020]. It is conceptually related to local fine-tuning, which consists of training a common
global model and subsequently personalizing it for each agent by performing a small number of SGD
steps on the agent’s local data (resulting in one model per agent) [Kairouz et al., 2019]. WE achieves a
smoother and more differentiated transition from global to local training by using a weighted average
of the agents’ gradients to update the server model at each communication round. Thus, the server
model after running WE once is personalized for one specific agent—called user or Alice.1 Like WE,
WAFFLE uses aggregation weights derived from the Euclidean distance between gradients to update
the global model, but it combines this approach with the use of SCVs (Section 1.1). These different
approaches for transitioning from global to local training are illustrated in Figure 3 (Section 3).

Instead of interpolating between gradients at each round, a slightly different approach consists of
interpolating between a local and global model [Grimberg et al., 2021, Donahue and Kleinberg, 2020,
Deng et al., 2020, Zhang et al., 2021]. For instance, Deng et al. [2020] propose the adaptive FL
algorithm APFL that achieves personalization by learning a global model and a set of local corrective
models with which to interpolate. Another related approach is personalized MAML, where a global
model is optimized with respect to (w.r.t.) the loss after local fine-tuning on each agent’s local
data [Finn et al., 2017, Fallah et al., 2020]. Finally, regularization can be used (instead of weighted
averaging) to mix global and local training [Smith et al., 2017, Li et al., 2021]. For instance, Li et al.
[2021] recently showed very promising results with Ditto, where the local model’s training is split
across all communication rounds and regularized by its distance from the current global model.

1.3 Benchmark

While several categories of non-IID data have been identified by Kairouz et al. [2019], we focus only
on label skew and concept shift:

• Label skew: The distribution of labels varies between agents, but the "true" classification
function is the same for all agents. This is, so far, the type of non-IID-ness most commonly
used in personalized FL benchmarks [Li et al., 2021, Fallah et al., 2020, Deng et al., 2020].

• Concept shift: The mapping from the features to the label varies across agents. We include
concept shift to model naturally partitioned data sets like those used by Smith et al. [2017].

1.4 Contributions

• We present a new personalized collaborative ML algorithm named WAFFLE (Weighted
Averaging For Federated LEarning), which builds on the existing methods SCAFFOLD and
Weight Erosion (WE) by using stochastic control (SC) and weighted gradient aggregation.
To the best of our knowledge, this is the first method that uses SC in model personalization.

• We build an image classification benchmark with label skew and concept shift. We then use
it to compare WAFFLE against baselines (Federated Averaging and Local), its parent

1The authors motivate this setting, in which all other agents contribute selflessly to Alice’s objective, by
constructing a fictive scenario of cross-silo FL across hospitals. Alternatively, for cross-silo FL, WE (or WAFFLE)
can be run several times in parallel to obtain personalized models for all agents.
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methods (SCAFFOLD and WE), and against other state-of-the-art personalized FL methods
(APFL), thus contributing to further empirical evaluation of these methods.

• Finally, we show that in most cases, WAFFLE converges faster than its competitors WE and
APFL and matches or improves their accuracy, while requiring less hyperparameter tuning.

2 The WAFFLE Algorithm

To introduce WAFFLE, we will first summarize the known SCAFFOLD FL algorithm on which it is
based, and then detail how personalization can be achieved by weighted averaging between agents,
for suitable weight choices. SCAFFOLD maintains an estimate of what all agents are learning, called a
control variate, so that agents can simulate having all the data and estimate the direction in which
they should update their gradient. Thus, it is more efficient and addresses the problem of client
drift. Indeed Karimireddy et al. [2020] prove that SCAFFOLD converges to the globally optimal model
instead of converging to a weighted average of local models and does so much faster and more
accurately than FedAvg in the presence of inter-agent heterogeneity.

2.1 Personalization Using Weighted Update Aggregation

WAFFLE is essentially a personalized version of SCAFFOLD, where the goal is no longer to get a global
model for all agents but a personalized model for one particular agent, (Alice). The idea is to start
from global training (SCAFFOLD) and to gradually move to local training. SCAFFOLD computes the
gradient for the server model (∆x) and the control variate ∆c (the assumption of what other agents
are learning) by averaging each agent’s update ∆yi and local control variates ci at each round
[Karimireddy et al., 2020, Algorithm 1, Line 16]. It is at this step that WAFFLE intervenes: Instead of
averaging all agents at each round, WAFFLE assigns a weight αi to each agent and computes ∆x and
∆c by a weighted combination as per Equation (1). Changes w.r.t. SCAFFOLD are highlighted in red:

(∆x,∆c)←
∑

i∈{1,...,N}

αi (∆yi,∆ci) (1)

For N agents, we recover SCAFFOLD (global training) by setting all weights equal to 1
N . In contrast,

we recover local training by setting all weights to 0, except the weight of Alice.

WAFFLE is based on a smooth transition from global to local training. To do this, the weight of each
agent is updated according to the degree of personalization desired for the round. Just as SCAFFOLD
uses the control variates to converge to the global model for the union of all agents’ datasets, WAFFLE
uses them to converge to a personalized model based on a weighted subset of agents (Figure 1). Each
agent is included and weighted in this subset based on the current degree of personalization and
whether their dataset is sufficiently similar to Alice’s, as measured by the distance between their
gradients at each round.

Figure 1: Evolution of the personalized model and agent models on WAFFLE in a three-rounds scenario
where agent 1 has a higher weight than agent 2.

The weight of each agent at a given round depends on the distance between its and Alice’s gradient.
As the method uses SGD (i.e., stochastic gradients), the agent weights are also subject to stochastic
noise. Indeed, at some rounds, some agents may have an atypical gradient resulting in a bad weight,
even if their contribution is still needed for the global model. Therefore, we average the current
weight with the last two weights to smooth out strong random effects (line 10 of Algorithm 1).
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To compare each agent with Alice, we use the Euclidean distance between gradients. Simply, we
want an agent with a small distance to have a higher weight than an agent with a larger distance. Like
SCAFFOLD, we have a central server that coordinates all the agents. At each starting round it gives
the current personalized model and control variate to all agents for training. When the agents finish
training the model with their data, they send the updated model and their local control variate back
to the server. The server then calculates the Euclidean distance of each update from the selected
agent and modifies the weight assigned to each agent accordingly. Finally, it calculates the new
personalized model and the new control variate (Equation (1)). The implementation of WAFFLE can
be seen in the modified version of SCAFFOLD (Algorithm 2, Appendix B) where changes w.r.t. to the
original code are written in red ink. Agent weights are obtained by CalcWeight (Algorithm 1), which
is explained in the next subsection.

2.2 Computing Agent Weights for WAFFLE

WAFFLE uses a new data-dependent approach to select the contribution weight αri of agent i at each
round r. It relies on hyperparameters Ω and Ψ: two functions defining the degree of personalization
for each round r (where a value of 1 corresponds to global training and 0 is personalized (local)
training). As explained later, we reduce the functions Ω and Ψ to a single, positive real-valued
hyperparameter for ease of tuning.

The weight is calculated according to Equations (2) and (3), where
• agent i? is Alice
• di is the distance between the gradients of agents i and i?

• dM is the largest such distance: dM ← max
i

di

• Analogously, dm is the smallest such distance (excluding di? )
• Ω(r) and Ψ(r) denote the degree of personalization for round r

The weight of an agent is based on the distance between its gradient and the gradient of agent i?, but
also on the distribution of the distances of the agents. The distance of i? would always be 0, we want
to change it to a similar value compared to the distances of other agents. The further away Alice’s
distance is from the others, the less weight we assume the agents have compared to Alice. We need a
“distance” di? for Alice in Equation (3). Thus, Equation (2) serves to assign her such a distance based
on the hyperparameter Ω. When Ω ≈ 1 (i.e., more global training), Alice’s assigned “distance” (di? )
is close to the next smallest distance dm , resulting in similar weights for these two agents. The more
Ω decreases towards 0, the smaller (di?) becomes compared to all other agents’ distances, resulting
in a large weight for Alice (i.e., more local training).

di? ← dm ·
(

1− dM − dm

dM
(1− Ω(r))

)
(2)

αri ← max
{

Ψ(r)− di − di?
dM − di?

, 0
}

(3)

Equation (3) serves as a threshold of inter-agent utility. To pass the threshold, the gradient of agent i
must be closer than the other agents’ gradients (based on the range of distances). With Ψ close to 0
(i.e., more local training), only a small fraction of the range between the minimum and maximum
distance will map to a non-zero weight. Thus, learning is concentrated in a subset of agents with the
most similar gradients.

Using the two functions Ω and Ψ, we can define different strategies for WAFFLE. We could, as an
example, shift rapidly toward zero and thus drastically limit larger steps in global training in the
initial phase of personalization.

As Algorithm 1 would otherwise have 2R positive real-valued parameters to tune (values of Ω and Ψ
for each round), we restrict ourselves to Ω(r) = Ψ(r) = a single-parameter function of r. However,
more methods should be investigated to see the full potential of WAFFLE in different scenarios.

In this paper, we use a sigmoid function to give the general training a gradual slope towards smaller
values Equation (4) and Figure 8. The function has a parameter ∆Ω that controls the slope, a higher
value will steepen the slope and thus move faster towards the local training. According to our
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experiments, a good value for ∆Ω is around 3.2, irrespective of the model used. With this value,
WAFFLE transitions to mostly local SGD after 70− 90% of the total number of rounds, depending on
the similarity of the agents’ gradient to that of Alice. A simple modification to delay or accelerate the
local learning time is to move the Ω function horizontally by adding a value to r.

Ω(r) = Ψ(r) =
1

1 + e∆Ω·(r/(R/2)−1))
(4)

Algorithm 1. CalcWeights-Ω

input : N , R, i?, r, {∆yi}, αr−1, αr−2

hyperparameter : Functions Ω and Ψ from {1, . . . , R} to R>0

output : Weight vectors ᾱr, αr
1 foreach agent i ∈ {1, . . . , N} do

// Compute the Euclidean distance between updates of agents i and i?.
2 di ← ‖∆yi −∆yi?‖2 // di? = 0

3 dM ← max
i 6=i?

di, dm ← min
i 6=i?

di

4 di? ← dm ·
(
1− dM−dm

dM (1− Ω(r))
)

// 0 ≤ di? ≤ dm if Ω(r) ∈ [0, 1]
5 foreach agent i ∈ {1, . . . , N} do
6 α0

i ← max
{

Ψ(r)− di−di?
dM−min

i
di
, 0
}

7 if r ≥ 0.95R then
8 α0

i ← 0 if i 6= i? else 1

9 α0 ← 1∑
α0

i
(α0

1, . . . , α
0
N )>

10 ᾱr ← 1
3 (α−2 + α−1 + α0)

3 Benchmarking Personalized Collaborative Learning Methods

To compare the performance of WAFFLE with the state of the art, we evaluate it against two re-
cent personalized FL methods—APFL [Deng et al., 2020] and Weight Erosion (WE) [Grimberg
et al., 2020]—as well as two global methods—Federated Averaging [McMahan et al., 2017]
and SCAFFOLD [Karimireddy et al., 2020]—and finally, local training using only Alice’s dataset
(Local). SCAFFOLD and WE were selected to validate whether WAFFLE outperforms the methods it
builds upon. We included APFL in the benchmark as an unrelated personalized FL method which has
an open-source implementation. The benchmark consists of training standard image classification
networks on standard IID and non-IID image datasets described below.

Two 10-class image classification tasks are used based on either the MNIST or CIFAR10 datasets. To
generate confidence estimates, we run the MNIST benchmark with five different seeds. However,
using five seeds for CIFAR10 would be prohibitive due to computational limitations.

Distributions and Models. We test five distributions (A,B,C,A*,B*), the first one (A) is IID and
serves as a baseline. A classic label skew distribution (B) was selected for consistency with several
other benchmarks [Collins et al., 2021, Deng et al., 2020, McMahan et al., 2016], where only a small
number of agents have samples from any given class (uniformly distributed amongst these agents).
Distribution C exhibits more nuanced label skew, where the labels are not uniformly distributed
among the agents. Instead, each agent will have 40% of one label, 20% of two labels, and 10% of
two other labels. We also present two other distributions—concept shift on the IID distribution (A*),
and concept shift on top of classic label shift (B*). Concept shift is achieved by randomly swapping
the class labels of all agents, except for Alice. We specify each distribution as a list of ten numbers
that sum to one (see Figure 2)). For each agent i, we move the list to the right i times to get non-IID
data, e.g. with distribution B, agent 0 will only have labels 0 to 3, agent 1 labels 1 to 4, etc.

For MNIST we use a LeNet-5 model [LeCun et al., 1989] and for CIFAR10 we use DLA [Yu et al.,
2017].
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Figure 2: Repartition of labels between all
agents for each distribution benchmarked

Hyperparameters. We use an SGD optimizer
with a learning rate of 0.1 for MNIST and 0.01
for CIFAR10. Following [Yu et al., 2017] we
add a momentum 0.9 and a weight decay 5e-4 for
CIFAR10 . Concerning the batch size, it is set to
32 for MNIST and 128 for CIFAR10. Except for
the APFL method, we define the hyperparameters in a
principled manner (based on the expected behaviour of the algorithm). As WE and WAFFLE use a
weight system, we attempt to set the parameters in such a way that both algorithms reach fully local
learning at about the same time. In practice, this was difficult to achieve as some hyperparameters are
very sensitive. Fully local learning is obtained when all weights reach zero except for Alice (Agent
0), who has a weight of one. Figure 3 shows an example of the evolution of the weights. Alice (agent
0) is placed in the centre. For the hyperparameters of APFL, we use the same method mention in
the paper by [Deng et al., 2020], and adaptively update the hyperparameter to guarantee the best
generalization performance.

Figure 3: Evolution of weight for personalized FL with the distribution C on MNIST (seed = 1)

The tuned hyperparameters are listed in Table 3 (Appendix B). Out of the two methods, WAFFLE is
the easiest to parametrize, as the hyperparameter does not change in contrast to the weighting system
used by WE. This is because WAFFLE can work very well without tuning, as opposed to WE which
requires hyperparameter tuning to perform well. As explained in Section 2.2, we purposefully restrict
WAFFLE to a single hyperparameter, ∆Ω (Equation (4)) and we use the same value for all experiments.
Nevertheless, we show in the result section that WAFFLE is able to obtain a very good accuracy even
without tuning.

4 Results

We present the results of our benchmarking in Table 1 below. For each method and each distribution,
it shows the best accuracy reached at any of the 100 epochs. In the MNIST section, results are
averaged across five random seeds and listed along with the standard deviation as avg ± std.

Figure 4: Evolution of accuracy with distribu-
tion C on MNIST, average over five seeds of
the best accuracy obtained up to each turn.

To see the evolution of the accuracy, we provide an
example in Figure 4. The evolution for each experi-
ment is shown in the appendix (see Figures 6 and 7).

MNIST. On MNIST, WAFFLE and WE outperform the
other methods for the label skews (B, C), but not for
IID distribution (A). The difference between WAFFLE
and WE lies in the speed of convergence: As expected
WAFFLE converges faster thanks to the use of SCVs.
For the concept shift distributions (A*, B*), all per-
sonalized FL methods improve accuracy compared to
global FL methods. Among all personalized FL meth-
ods, WE performs slightly better in this setting. Here,
WAFFLE is not more efficient than WE (time taken to
reach convergence). This may be related to the fact
that only small fractions of agents are useful in this
distribution, so until we reach this critical point, both
algorithms are bound to the same slow increase until a threshold. Regarding APFL, the method also
performs better than global FL methods except for the IID distribution (A), but it struggles to achieve
a better result than the other two personalized FL methods and Local.
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CIFAR10. Concerning CIFAR10, the lack of other seeds makes us less confident about the interpre-
tation of our results, however, the results are coherent with our expectations. For example, like with
MNIST, global FL methods outperform personalized methods on the IID distribution and present a
significant improvement compared to Local. Distribution B and C (label skew) produce results close
to those of MNIST, where WAFFLE and WE outperform others. Concerning concept shift, personalized
FL methods are still a great improvement compared to global FL or Local. The accuracy of WAFFLE
and WE is approximately the same but as for MNIST we don’t have a noticeable difference between
the speed of convergence to best accuracy. For APFL, we get similar results as MNIST, APFL performs
better than the global FL methods, but this time it is better than Local. Unfortunately, compared to
the other two customized methods, it performs much worse.

Table 1: Comparison of average local test accuracy and standard deviation of different algorithms
given different data distributions.

Algorithms

Local FedAvg SCAFFOLD WE WAFFLE APFL
MNIST

IID (A) 96.88%
±0.47

98.99%
±0.08

99.03%
±0.08

99.01%
±0.16

98.93%
±0.1

97.55%
±0.13

Distr. B 99.38%
±0.09

98.97%
±0.18

99.24%
±0.17

99.69%
±0.07

99.69%
±0.03

99.36%
±0.09

Distr. C 98.54%
±0.1

98.56%
±0.1

98.77%
±0.1

99.0%
±0.08

99.0%
±0.08

98.45%
±0.08

Distr. A* 96.56%
±0.27

13.37%
±3.21

19.93%
±5.95

98.09%
±0.26

97.99%
±0.26

96.24%
±0.22

Distr. B* 99.47%
±0.07

45.26%
±4.1

57.51%
±4.02

99.67%
±0.09

99.63%
±0.11

99.44%
±0.07

CIFAR10

IID (A) 0.771% 0.925% 0.927% 0.912% 0.907% 0.776%
Distr. B 0.888% 0.884% 0.85% 0.935% 0.931% 0.895
Distr. C 0.832% 0.857% 0.868% 0.907% 0.914% 0.809%
Distr. A* 0.763% 0.248% 0.259% 0.877% 0.9% 0.78%
Distr. B* 0.876% 0.782% 0.476% 0.937% 0.926% 0.878%

5 Limitations and Future Work

The benchmark has some limitations that should be addressed in future work and are discussed in
detail in Appendix A. Firstly, the theoretical properties of WAFFLE should be investigated, in particular
whether the guarantees of SCAFFOLD are maintained. Secondly, our benchmark should be expanded
to cover more types of non-IID distributions and naturally partitioned datasets, and to include more
personalized FL methods like the recently published Ditto. Finally, the versatility of WAFFLE could
also be further investigated by optimizing the functions Ω and Ψ for different contexts.

6 Conclusion

In this work, we propose WAFFLE, a personalized FL algorithm based on SCAFFOLD, that can overcome
client drift and accelerate convergence to an optimal personalized model. WAFFLE uses the Euclidean
distance between agent updates to weigh their contributions and thus transition gradually from
global to more local training. We explored the performance of WAFFLE in two cases of non-identical
data—concept shift and label skew—on two standard image datasets—MNIST and CIFAR10. We
demonstrate that in most cases WAFFLE shows a faster convergence and a possible improvement
in accuracy compared with other personalized FL methods. We also demonstrate that WAFFLE is
easier to handle than most personalized learning methods. Indeed, a fixed default value for its single
hyperparameter yields competitive results in all test cases. However, by design, WAFFLE can be
adapted to a task by modifying Ω and Ψ functions and thus potentially reach even better accuracy.
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