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Abstract

Personalized Federated Learning (PFL) has recently seen tremendous progress,
allowing the design of novel machine learning applications to preserve the privacy
of the training data. Existing theoretical results in this field mainly focus on
distributed optimization for minimization problems. This paper is the first to
study PFL for saddle point problems (which cover a broader class of optimization
problems), allowing for a more rich class of applications requiring more than just
solving minimization problems. In this work, we consider a recently proposed PFL
setting with the mixing objective function, an approach combining the learning of
a global model together with locally distributed learners. Unlike most previous
work, which considered only the centralized setting, we work in a more general
and decentralized setup that allows us to design and analyze more practical and
federated ways to connect devices to the network. We proposed new algorithms
to address this problem and provide a theoretical analysis of the smooth (strongly-
)convex-(strongly-)concave saddle point problems in stochastic and deterministic
cases. Numerical experiments for bilinear problems and neural networks with
adversarial noise demonstrate the effectiveness of the proposed methods.

1 Introduction

Distributed optimization methods have already become an integral part of solving applied problems,
including many applications in machine learning. For example, distributing training data evenly
across multiple devices can greatly speed up the learning process. Recently, a new research direction
concerning distributed optimization - Federated Learning (FL) [23, 16], has appeared. Unlike classical
distributed learning methods, the FL approach assumes that data is not stored within a centralized
computing cluster but is stored on clients’ devices, such as laptops, phones, tablets. . . This formulation
of the training problem gives rise to many additional challenges, including the privacy of client’s data,
high heterogeneity of data stored on local devices, to name a few. In the most standard setting of
distributed and federated learning, the goal is to find the parameters of a global model based on all
local data.
Personalized FL. In this work, we allow each client to build their own personalized model and
utilize a decentralized communication protocol that will enable harvesting information from other
local models (trained on local clients’ data). The problem of a prediction of the next word written
on a mobile keyboard [11] has already become a typical example when the performance of a local
(personalized) model is significantly ahead of the classical FL approach that trains only global
model. Improving the local models using this additional knowledge may need a more careful balance,
considering a possible discrepancy between data splits the local models were trained on. Attempts to
find the balance between personalization and globalization have resulted in a series of works united
by a common name – Personalized Federated Learning (PFL). We refer the reader to the following
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survey papers [19, 14] for more details and explanations of different techniques.
Saddle Point Problems. In this paper, we also cover the topic of PFL, but unlike previous works
that focused on the minimization problem, we consider Saddle Point Problems (SPPs). SPPs cover a
broader class of problems than minimization problems, and numerous important practical applications
are formulated as SPPs. These include the already well-known and famous examples from game
theory or optimal control [4]. In recent years, saddle point problems have become popular in several
other respects. One can note a branch of recent work devoted to solving nonsmooth problems by
their reformulation in the form of saddle point points [25, 24], as well as the application of such
approaches in image processing [2, 3]. Most recently, significant attention of the community was
devoted to saddle problems in machine learning, e.g., Generative Adversarial Networks (GANs), that
are written as a min-max problem [6].

Strongly-convex–strongly-concave Convex–concave
Communications Local computations Communications Local computations
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Table 1: Summary of complexity results (upper and lower bounds) for finding an "-solution for in the
deterministic proximal (any local computations are cheap), deterministic gradient and stochastic (finite-sum)
setups. In the strongly convex - strongly convex case, convergence is measured by the distance to the solution. In
the convex-concave case, convergence is measured in terms of the gap function. Notation: µ = strong-convexity
constant of f , L = constant of L-smoothness of f , ⌦ = diameter (in Euclidean norm) of the optimization set,
�max(W ) = maximum eigenvalue of W , �min(W ) = minimum eigenvalue of W , � = �max(W )/�min(W ) ,
r = the size of the local dataset.
green = optimal bounds (match lower bounds), blue = optimal in some cases.

1.1 Problem Formulation

Following [9, 10], we can define the Personalized Federated Saddle Point Problem (PF SPP) with a
mixing objective as follows:

min
x1,...,xM

max
y1,...,yM

 
1

M

MX

m=1

fm(xm, ym) +
�

2M

MX

m=1

kxm � x̄k
2
�

�

2M

MX

m=1

kym � ȳk
2

!
. (1)

The problem consists of the main objective function and two regularizers, where x1, . . . , xM and
y1, . . . , yM are interpreted as local models on nodes, x̄ =

PM
m=1 xm, ȳ =

PM
m=1 ym and � > 0 is

the key regularization parameter, which corresponds to the degree of personalization of the models.
For example, with � = 0, the problem (1) will decompose into M separable problems and each
m 2 M will train just a local model. As � increases, the "importance" degree of regularization terms
increase and local xm, ym tend to x̄, ȳ. This formulation of the problem is valid both in the case of
centralized algorithms (all nodes communicate with the main node - the server) and in the case of
decentralized ones (there is no central server, all nodes are connected within a network, while only
connected nodes can communicate with each other).
Decentralized setting. In the scope of the decentralized setting, it is not straightforward to calculate
x̄, ȳ. The simplest solution to calculate them is to gather all the local values in one node, average
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them, and then re-distribute them back to all the nodes. However, such an approach can still be
considered a centralized case. Alternatively, to avoid the global average representation for all the
nodes, it can be sufficient to find a consensus and hence find an approximate average. For such
purposes gossip protocols [15, 30] can be utilized. The main difficulty of such an approach is the fact
that when solving the problem (1), the gradients of the regularizer are unavailable without knowing x̄

and ȳ. This motivated us to consider a more general formulation of the problem for the decentralized
case:

minXmaxY {F (X,Y ) := f(X,Y ) + '(X,Y )} (2)

with f(X,Y ) =
PM

m=1fm(xm, ym), '(X,Y ) = �
2 k

p
WXk

2
F �

�
2 k

p
WY k

2
F , where for conve-

nience we group all local vectors xm, ym into matrices X := [x1, . . . , xM ]T and Y := [y1, . . . , yM ]T ,
� > 0, and W is the gossip matrix reflecting the properties of the communication graph between
the nodes. The gossip matrix W has several interesting properties. In particular, it contains nonzero
elements wij if and only if there is an edge (i, j) in the connection graph. Unlike (1), the for-
mulation (2) penalizes not the difference with the global average, but the difference with other
connected local nodes. Moreover, this proposed formulation enables computing the gradients of
' : rX'(X,Y ) = �WX and rY '(X,Y ) = ��WY , for which just one communication with
neighbors is enough. The idea of using this type of penalty is not new and has been used in the
literature in several contexts, in particular for classical decentralized minimization [21, 7] with large
� and for multitask PFL [28, 29] with small �. In this paper, we focus on the case when � is a
small parameter. Note that in the proposed formulation (2) we consider both the centralized1 and
decentralized cases.
Notation: For vectors, we use the Euclidean norm k · k = k · k2 everywhere, and for matrices - the
Frobenius norm k · kF . We define a projection operator projC(x) = minu2C ku � xk which is the
Euclidean projection onto C. We denote by I the identity matrix and by E an all-ones matrix. For the
gossip matrix W we denote �max(W ) = �1(W ) � . . . � �M (W ) = 0 the spectrum of W .
For given convex-concave function g(x, y), convex sets X,Y and any x 2 X, y 2 Y we define prox-
imal operator as follows: proxg(x, y) = argminu2X maxv2Y {g(u, v) +

1
2kx� uk

2
�

1
2ky � vk

2
}.

Let us define the functions of these matrices, as it was done in (2). We introduce the following
notation for gradients:

rXf(X,Y ) = [rx1f1(x1, y1), . . . ,rxM fM (xM , yM )]T ,

rY f(X,Y ) = [ry1f1(x1, y1), . . . ,ryM fM (xM , yM )]T ,

rX'(X,Y ) = �WX, rY '(X,Y ) = ��WY.

1.2 Summary of Contributions

This paper is the first paper (to the best of our knowledge) that proposes optimal algorithms and
derives the computational and communication lower bounds for SPPs in a PFL setting. We now
outline the main contribution of our work as follows:
• We present a new SPP formulation of the PFL problem (2) as the decentralized min-max mixing
model. This extends the classical PFL problem to a broader class of problems beyond the classical
minimization problem. It furthermore covers various comm. topologies and hence goes beyond the
centralized setting.
• We develop a lower bound both for the amount of communication and local computation for a
general class of algorithms (that satisfy Assumption 3). The bounds naturally depend on the commu-
nication matrix W (as in the minimization problem), but our results apply to SPP (see "Lower" rows
in Table 1 for various settings of the SPP PFL formulations).
• We develop multiple novel algorithms to solve SPP for optimizing min-max decentralized person-
alized federated learning problems (2). The first methods (Algorithm 1and 2) is based on recent
sliding method [20, 27, 9], but is extended to hangle SPPs in a decentralized PFL. The second method
(Algorithm 3) extends recently proposed randomized local method of [10] for optimizing SPP in PFL
setting.
• We provide the theoretical convergence analysis for all proposed algorithms. Our theoretical results
provide the oracle complexities concerning both the function f and the function '. For example, some
settings require that we perform Õ

⇣
��max(W )⌦2

"

⌘
communication rounds (calls of rX'(X,Y ),

1The centralized case corresponds to a complete computational graph. If we set W to the Laplacian of a
complete graph, it is easy to verify that we obtain (1).
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rY '(X,Y )) and Õ

⇣
L⌦2

"

⌘
local computations on each node (calls of rXf(X,Y ), rY f(X,Y ))

(see Table 1 for overview of developed complexity results).
• We adapt the proposed algorithm for training neural networks. We provide an explanation and
intuition of how our algorithm could be adapted to the neural network settings. We compare our
algorithms: type of sliding and type of local method. To the best of our knowledge, this is the first
work that compares these approaches in the scope of neural networks, as previous studies were limited
to simpler methods, such as regression problems [10, 9]. Our experiments confirm the robustness of
our methods on the problem of training a classifier with adversarial noise.

2 Assumptions

Before presenting the lower bound complexity results, we state key assumptions about the problem
statement as well as the connection graph.
Functions and domains. We consider problem (2) on convex compact domains X and Y , i.e. all
xm 2 X ⇢ Rnx , all ym 2 Y ⇢ Rny . Let the set X ⇥ Y has diameter ⌦. Additionally, we introduce
standard assumptions on fm and f .
Assumption 1

• Each fm is L-smooth on X ⇥Y , i.e. for all x1, x2 2 X , y1, y2 2 Y it holds that krxfm(x1, y1)�
rxfm(x2, y2)k2 + kryfm(x1, y1) � ryfm(x2, y2)k2  L

2
�
kx1 � x2k

2 + ky1 � y2k
2
�
; in

case, when fm = 1
r

Pr
i=1 fm,i, fm is L-average smooth, i.e. 1

r

Pr
i=1 krxfm,i(x1, y1) �

rxfmi(x2, y2)k2 + kryfm,i(x1, y1)�ryfmi(x2, y2)k2  L
2
�
kx1 � x2k

2 + ky1 � y2k
2
�
;

• f is µ - strongly-convex-strongly-concave on X ⇥ Y , i.e. for all x1, x2 2 X , y1, y2 2 Y it
holds that hrxf(x1, y1) � rxf(x2, y2);x1 � x2i � hryf(x1, y1) � ryf(x2, y2); y1 � y2i �

2µ
�
kx1 � x2k

2 + ky1 � y2k
2
�
;

• Each fm is convex-concave on X ⇥ Y , i.e. 0- strongly-convex-strongly-concave.
Communication network. The communication network between devices can be represented as
a fixed, connected, undirected graph. G := (V, E), where the set of vertices V represents the set
of computing nodes, and the edges E indicate the presence or absence of connection between the
corresponding nodes. Recall that we consider a decentralized case, where information exchange (by
gossip protocol) is possible only between neighbors. In such a case, communication is represented as
a matrix multiplication with a matrix W introduced in (2). It remains to introduce a formal definition
of gossip matrix:
Assumption 2 We call a matrix W a gossip matrix if it satisfies the following conditions: 1) W is an
M ⇥M symmetric, 2) W is positive semi-definite, 3) ker(W ) = span{(1, . . . , 1)}, 4) W is defined
on the edges of the network: wij 6= 0 only if i = j or (i, j) 2 E .
Computing oracles. For local computations we introduce three different oracles: proximal, gradient
and gradient of summands. More formally, for each device i and local points xm, ym we can compute
one of the following
• proximal oracle (�m � 0): Loc(xi, yi, i) =

n
(rXfi(xi, yi),�rY fi(xi, yi))

T
, prox�ifi(xi, yi)

o

• gradient oracle: Loc(xi, yi, i) =
n
(rXfi(xi, yi),�rY fi(xi, yi))

T
o

• summand gradient oracle: Loc(xi, yi, i) =
n
(rXfi,ji(xi, yi),�rY fiji(xi, yi))

T
o

.
In fact, by proximal oracle, we can quickly and cheaply solve any local subproblems (compute prox).
Gradient oracle gives access to local gradients. Summand gradient refers to the stochastic case, when
of local functions have finite-sum structure: fi = 1

r

Pr
j=1 fi,j , and in each call of oracle we can

compute gradients of only summand (selected randomly or deterministically).

3 Lower Bounds

Before presenting the lower complexity bound (for both communication and local computation) for
solving the problem (2), we first define a class of algorithms for which the lower bound will be
proved. Note that the communication oracle allows devices to collect information from others with
the gossip weight matrix W . The local computation oracle is defined above. The class of algorithms
analyzed will satisfy the following assumption:

4



Assumption 3 Let {(xk
,yk)}1k=1 be iterates generated by algorithm A. For each node of graph G

we define sequence of local memory {Mm,k}
1
k=1 for 1  m  M : Mm,0 = span

�
(x0

m, y
0
m}

�
and

Mm,k+1 =

(
span

�
Mm,k, {(xk

m, y
k
m), Loc(xk

,yk
,m)}

 
, if local oracle at the iteration k

span
nS

j:(m,j)2E Mj,k

o
, if consensus oracle.

3.1 Lower complexity bounds on the communications

The following theorem presents the lower bound for the communication complexity:
Theorem 1 Let p� � 6, L � µ, ��+

min(W ) � µ. Then, there exists a graph G, with a corre-
sponding matrix W satisfying Assumption 2, functions f1, f2, . . . , fM : Rn

⇥ Rn
! R satisfying

Assumption 1, and a starting point (x0
, y

0) such that for the sequences of iterates {(xk
m, y

k
m)}Nk=1

generated by any algorithm A, satisfying Assumption 3, for any device m it holds

kx
N
m � x

⇤
k
2 + ky

N
m � y

⇤
k
2
�

⇣
1� 10max

n
µ

��max(W ) ,
µ

(L�µ)
p
�

o⌘S ky0�y⇤k2

4 ,

where N is number of oracle calls, S  N is number of consensus oracle calls.

3.2 Lower complexity bounds on the local oracle calls

Next, we present the lower complexity bounds on the number of the local oracle calls for different
types of a local oracle.
Proximal oracle. The construction we did in Theorem 1 requires

O

✓⇢
min{��max(W ),L

p
�(W )}

µ log 1
"

�◆
communication rounds to reach "-solution of (2),

but on top of that, it also requires at least O
⇣n

min{��max(W ),L}
µ log 1

"

o⌘
calls of local oracle.

Accessing the local gradients is naturally needed for the algorithm to move closer to the optimal
solution. Hence, this concludes the lower bound on the case of using local proximal oracle.
Gradient oracle. Starting with (X0, Y0) = (0, 0), in case when matrix W is a Laplace matrix of a
fully connected graph and choosing f1 = f2 = · · · = fM , the problem (2) reduces to min-max a
single local function f1. From [31], we know that the worst-case need at least O

⇣
L
µ log 1

"

⌘
gradient

calls to find "-solution [31]. Hence, we can obtain the lower bound for gradient oracle. Because
we start from the same starting point on each node, and all the local functions are identical, the
communication does not help in the convergence. The construction of f only allows exploring a
single coordinate per a local call, regardless of the comm.
Summand gradient oracle. Let us assume that algorithm A is either deterministic, or generated by
given seed that is initialized identically for all clients. The same way as for gradient oracle let us set
(X0, Y0) = (0, 0), W is the Laplace matrix of a fully connected graph and f1 = f2 = · · · = fM . For
this algorithm, all local iterates will be identical, i.e., (xk

1 , y
k
1 ) = (xk

2 , y
k
2 ) = · · · = (xk

M , y
k
M ) for all

k � 0. Consequently, the problem reduces to min-max of a single finite sum objective f1, which
needs at least O((r +

p
rL
µ ) log 1

" ) summand gradient calls [8] to get solution with error ".

4 Optimal algorithms

In this section, we present optimal algorithms for solving the problem (2). In the main paper, we
include only a part of the contribution. We consider only one type of methods (Sliding), only in the
case when ��max(W )  L

p
�(W ) and with one type of oracles (deterministic). In Appendix A,

you can find the rest of the contribution. See Table 1 for summary.

4.1 PF Min-Max via Sliding

4.1.1 Case ��max(W )  L
p
�(W )

The simplest method for solving (2) is to consider the function F as a whole, not to take into account
its composite structure. As a basic method, for example, the classical method for smooth saddle point
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Algorithm 1 Sliding 1 for Decentralized Min-Max(S1DMM)
parameters: stepsize �, precision �

initialization: choose x
0
, y

0
2 X ⇥ Y , x0

m = x
0, y0m = y

0 for all m
1: for k = 0, 1, 2, . . . do

2: V
k
x = X

k
� � · �WX

k, V
k
y = Y

k
� � · �WY

k

3: Find U
k, such that kUk

� Û
k
k
2
F  �, where Û

k is a solution of:

min
Ux

max
Uy

�f(Ux, Uy) +
kUx�V k

x k2
F

2 �
kUy�V k

y k2
F

2 (3)

4: X
k+1 = projX

�
U

k
x + � · �

�
WX

k
�WU

k
x

��

5: Y
k+1 = projY

�
U

k
y + � · �

�
WY

k
�WU

k
y

��

6: end for

problems - Extra Step Method [17] (or Mirror Prox [13]) - is suitable. Then the number of calls to the
oracle for f and' are the same. In our case (see the explanation above) the step along the gradient
of the regularizer requires communication with neighboring nodes. To calculate the gradients of f ,
it is enough to calculate all the local gradients of fm and do not exchange information at all. Of
course, we want to reduce the number of communications (and calls the regularizer gradient) as
much as possible. This is especially true when we want a fairly personalized model (� ⌧ L) and
information from other nodes is not particularly important. To solve this problem and separate the
oracle complexities for function f and function ', we base our method on Sliding technique [20].
The optimal method for PF minimization from [9] is also a kind of Sliding method.
It is clear that for saddle point problems, we cannot just use the method from [9]. Sliding for saddles
has its own specifics [27] – exactly for the same reasons why Extra Step Method is used for smooth
saddles instead of the usual Descent-Ascent [5] (at least because Descent-Ascent diverges for the most
common bilinear problems). Let us give some comments on how the Algorithm 1 works. Note that
we only need to communicate with other devices on lines 2, 4 and 5: devices send variables xk

m and
compute WX

k and WU
k
x . Each device m does not compute the full product of matrices, it calculates

only the corresponding line: vkx,m = x
k
m � � · �

PM
i=1 wm,ix

k
i . This step requires only information

from the node’s neighbors (similarly written for V k
y and U

k). Furthermore, we note that subproblem
(3) is solved locally and separately on each machine (in parallel). Indeed, one can divide it on M

disjoint problems: minux,m maxuy,m �fm(ux,m, uy,m) + 1
2kux,m � v

k
x,mk

2
�

1
2kuy,m � v

k
y,mk

2.
Each of these problems can be resolved locally, for example, by Extra Step Method [13] or by
Randomized Extra Step Method [1]. In lines 4 and 5, under the projection of matrices, we mean that
each row of the matrix is projected onto the set.
• S1DMM + Extra Step Method. The following theorem states the convergence rate of S1DMM
with Extra Step Method [13] as a local algorithm for subproblem (3).

Theorem 2 Let Algorithm 1 be applied for solving (2) with convex-concave and L -smooth local
functions fm. Then one can choose a constant step �, a precision �, so that we need O

⇣
��max(W )⌦2

"

⌘

communication rounds and Õ

⇣
L⌦2

"

⌘
local computation on each node, to obtain ẑ = (x̂, ŷ) such that

[maxy2Y f(x̂, y)�minx2X f(x, ŷ)]  ".
If we additionally assume that global objective function f is µ-strongly-convex-strongly-concave,
then after O(��max(W )

µ log 1
" ) communication rounds and Õ(Lµ log 1

" ) local computations on each
node we will obtain ẑ, such that kẑ � z

⇤
k
2
 ".

As expected, the communication complexity of S1DMM + Extra Step Method is O
⇣

��max(W )
µ log 1

"

⌘

in the strongly-convex-strongly-concave case, thus optimal when L
p

�(W ) = O(��max(W )). The
local gradient complexity is Õ(Lµ ), which is, up to log and constant factors identical to the lower
bound on the local gradient calls. To get an estimate for the proximal oracle, it is enough to note that
the subproblem (3) is local and matches the definition of the proximal oracle, then we can solve this
problem in one oracle call.
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5 Experiments

The goal of this experiment is to compare our new methods: Algorithm 1 and Algorithm 3 for a
neural network complemented with a robust loss [22]

fm(xm, ym) :=
1

Nm

NmX

n=1

`(g(xm, an + yn), bn) +
�x

2
kxmk

2
�

�y

2
kymk

2
,

where xm are the weights of the mth model, {(an, bn)}Nm
n=1 are pairs of the training data on the mth

node, yn is the so-called adversarial noise, which introduces a small effect of perturbation in the data.
In Appendix B.3 we discuss connection between neural networks and our Algorithms.
Data and model. We consider the benchmark of image classification on the CIFAR-10 [18] dataset.
It contains 50000 and 10000 images in the training and validation sets respectively, equally distributed
over 10 classes. To emulate the distributed scenario, we partition the dataset into N non-overlapping
subsets in a heterogeneous manner. For each subset, we select a major class that forms 25% of the
data, while the rest of the data split is filled uniformly by other classes. We parameterize each of the
learners as a convolutional neural network, taking ResNet-18 [12] architecture as the backbone. As a
loss function, we use multi-class cross-entropy, complemented with an adversarial noise.
Setting. To train ResNet18 in CIFAR-10, one can use stochastic gradient descent with momentum
0.9, the learning rate of 0.1 and a batch size of 128. We will use our two Algorithms in intuition from
Appendix B.3. In order for the comparison of Algorithm 1 and Algorithm 3 to be fair, it is necessary
to equalize the number of communications and local iterations for both algorithms, that is why we
need carefully choose T (the number of inner/local iterations in Algorithm 1) and p (probability in
Algorithm 3). Tables 2 and 3 shows all the experimental setups that we consider.

� T ✓ q Results
1/4 40 (1 epoch) 2 2 Figure 1 (a)
1/40 400 (10 epochs) 2 2 Figure 1 (b)
1/80 800 (20 epochs) 2 2 Figure 1 (c)

Table 2: Additional parameters for comparison of Algorithm 1 and Algorithm 3.

Results. One can see the results of the experiment in Figure 1. Table 2 shows the correspondence of
the various settings to the parameters.

(a) (b) (c)
Figure 1: Average accuracy in during process of learning with different average parameters � and T .
The first line presents the results of Algorithm 1, the second - Algorithm 3. Red line – accuracy of
the local model on local train data, blue line - accuracy of the local model on local test data, black
line – accuracy of the global model on global test data. The experiment was repeated 5 times, the
deviations are reflected.

Discussions. We compare Algorithms based on the balance of the local and global models, i.e. if
the Algorithm is able to train well both local and global models, then we find the FL balance by
this Algorithm. The results show that the Local SGD technique (Algorithm 3) outperformed the
Algorithm 1 only with a fairly frequent device communication (Figure 1 (a)). In other cases (Figure 1
(b), (c)), Algorithm 3 was unable to train the global model, although it withstood the good quality of
the local models. It turns out that the technique of Algorithm 1 (more precisely, its intuition from
Appendix B.3) can be considered robust for Federated Learning, even in the case of neural networks.
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