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Supplementary Material

A Optima algorithms (additional)

This is an addendum to Section 4 on optimal algorithms. Here we consider:
o Sliding in case with Apax (W) < L/ x(W) but with summand gradient oracle — Appendix ,

o Sliding in case with A\ pax (W) > L/ x (W) — Algorithm 2 in Appendix |A.1.2;
o other approach based not on Sliding but on Randomized Local method — Algorithm 3 in Appendix

A.1 PF Min-Max via Sliding

ALl Case Mooy (W) < Ly/Xx(W)

e SIDMM + Rand. Extra Step Method. We apply this algorithm when f,,(zn,,ym) =
71, Z;Zl fm,,r(xm, Ym ), Where each fm,r is convex-concave and each f; is L-average smooth. The
following theorem states the convergence rate of SIDMM with Extragradient with Variance Reduction
[1] as a local algorithm.

Theorem 3 Let Algorithm[l|be applied for solving @) with convex-concave and L-average smooth
local functions f,,. Then one can choose a constant step -y, a precision 6, so that we need

2 ~ 2
O(M) communication rounds and O( (T)"\‘“HX(VZHWL)Q ) local computation on each

node, to obtain 3 = (&,9) such that [max,cy f(Z,y) — minger f(z,9)] < e
If we additionally assume that global objective function f is u-strongly-convex-strongly-concave,
then after O(’\)‘%"(W) log 1) communication rounds and O((r)"\’%"(w) + %) log 1) local com-

putations on each node we will obtain 2, such that ||z — 2*||* < e.
One can find the ~ and § settings for Algorithm |1|in Appendix |C|

A2 Case Moy (W) > L/x(W)

Algorithm 2 Sliding 2 for Decentralized Min-Max(S2DMM)
Parameters: stepsize
Initialization: choose 20,y € X x Y, 20, = 29, 40 = ¢ forall m
1: fork=0,1,2,...do
22 VE=XF_— . Vxf(XF YF)
VE=YH . Vy f(XF,YF)

3: Find U*, such that |[U* — U*||% < 4, where U* is a solution of:

- AVWUL |2 U, —VF|?
i MVTULIE 10—V

x

i )
AWVUL 2 1U—VEI%
max — 3 — 3
v, 2!

4: XHEH = proj (UF + - (Vx f(XF,YF)
~Vx (U, UF)))
5: Y+ = proj,, (Ufj — 7 (Vy f(XFYF)

~Vy f(U;,Uy)))
6: end for

Note that we only need to communicate with other devices on lines 3 when computing the prox

2
vWX H . This problem is divided into two minimization sub-problems, by X,
F

and by Y. Hence, the problem (4) is solved by Fast Gradient Descent. Further, we note that the
algorithm’s steps in lines and|[5]are local and separable on each machine. The following theorem
states the convergence rate of S2DMM with FGD.

operator for ’\2—7
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Theorem 4 Let Algorithm 2 be applied for solving with convex-concave and L -
smooth local functions f,,. Then one can choose a constant step v, so that we need

~ / 2
(@] (min {Lsm)\/x(W), W}) comm. rounds and O (%22) local comp. on each

node to obtain zZ = (Z,7) s.t. [maxycy f(Z,y) — mingex f(z,9)] < e
If we additionally assume that global objective function f is ji¢-strongly-convex-strongly-concave,

then it holds that we have ||2 — 2*||?> < e after @(min{%\/x(W), 7W}log 1) comm.
rounds and O(% log 1) local comp. on each node.
As expected, the communication complexity of S2DMM + FGD is O (ﬁ\/ x(W) log %) in the

strongly-convex-strongly-concave case. It is optimal when A y,ax (W) = O(L+/x(W)). The local
gradient complexity is O(%), which is, up to log and constant factors identical to the lower bound on
the local gradient calls.

One can find the -y and ¢ settings for Algorithm [2|in Appendix [C| Below we will discuss and compare
both methods. Next, we move on to the second method.

A.2 PF Min-Max via Randomized Local Extra Step Method

Our first two methods (Algorithms 1 and 2) make several iterations between communications
when A is small (or vice versa, for big A make some communications between one local iteration).
The following method (Algorithm [3) is also sharpened on the alternation of local iterations and
communications, but it makes them more evenly. Our method is similar to the randomized local
methods (for example, as the method from [10]), but it uses not only importance sampling, but also
implicit variance reduction technique [1].

Algorithm 3 Randomized for Decentralized Min-Max (RDMM)
parameters: stepsize 7y, probability p, probability p, probability distribution ()
initialization: choose 2°,¢y" € X x Y, 20, = 20, y% = 40 for all m
1: fork=0,1,2,... do ~
2 XF=(1-pXF+pUy, YE=(1-pY"+pUy
3 XMV = projy (X* =y - (Vx f(UF, Uy) + AWUY)),
4 Y2 =projy, (YE + - (Vy f(UE,UF) — AWUY))

1, with probability 1 —p

5: G te §* =
enerate & {0’ with probability p

)

If €% = 0:

XM = proj, (XF = (AWxhe1/2 - 0wk vy f(UF,UF))),
8: Y*+ = proj,, (Yk Yy (—%WY’“*W + 2Dk vy f(UF, Uj)))
9: If ¢F = 1: R
10: Generate an vector of indexes &, according to ()
11 Xk = projy (Xk -7 (W (fogk (XEH/2 yhtE) — U fe (UF, Uf))
12: Y x F(UF, UF) + AWU§)>,
13: YHH = projy, (Y’€ +- (m (Vyfék (XHFH1/2 yhts) - Vy fe, (UF, U;f))
14: LYy f(UE, U - AWU§)>

1, withprob. 1 —p
0, with prob. p

16: Ua]f—i_l — €k+1/2 . U‘f + (1 _ €k+1/2> . Xk+1
17: U;€+1 _ §k+1/2 . U; + (1 _ €k+1/2) YR+
18: end for

3

15:  Generate £F1/2 = {

12



The following theorem states the convergence rate of RDMM.
Theorem 5 Ler Algorithm[3 be applied for solving (2) with convex-concave and L -smooth local
Sfunctions fp,; with sum structure. Then one can choose a constant step vy, probabilities p and p

2
so that we need (in average) O (M)

VTLO?
I

comm. rounds while the local average complexity

for some p and p is O (

Here L = \/L? + X\2)2(W).

If we additionally assume that global objective function f is p-strongly-convex-strongly-concave, then

to obtain 2 = (&, 9) s.t. [maxycy f(&,y) — mingex f(z,9)] <e.

for p and p it holds that we have ||2—2*||? < ¢ after (in average) O (M%"(W) log %) comm. rounds

while the local average complexity for some p and p is O (Sr + @) log %) .
One can find the p and p settings for Algorithm [3]in Appendix [C]

A.3 Discussions of the methods

Let us note some remarks about the obtained methods. Here we compare two different approaches:
deterministic — Algorithm[I]and [2] and stochastic — Algorithm 3]

e Both approaches allow combining and interleaving local iterations and decentralized gossip commu-
nications. As far as we know, there are no such algorithms in the literature for saddle point problems.
e Algorithm|[T]and 2| have better convergence estimates than Algorithm 3. Moreover, we assume that
Algorithm|1]is optimal for (I)) in case, when X is small, and Algorithm [2]— when ) is big.

o It seems that Algorithm [3]is more robust than Algorithms [2and 2] This is primarily due to the fact
that Algorithm [I]solves an auxiliary problem with a given precision. In the case of convex-concave
functions, there are no problems here. The stopping criterion is clear. But if we try to extend Algo-
rithm[I] to more complex problems, for example, to a non-convex one, the question of the precision
and stopping criteria becomes open. Algorithm [2]do not face such problems.

e On the other hand, in Algorithm [T it is straightforward to change the method for the auxiliary
problem, taking into account the peculiarities of f,,,. For example, stochastic methods [13]], or
variance reduction technique [1] can be easily used.

e In Algorithm [3|on lines[5] [6|and 0] the choice is made synchronously on all nodes, i.e., we need to
transfer information to all nodes somehow, that is, at the current step you need to choose the 1st or
2nd option. There are no problems in a centralized case. Still, this slightly slows down the algorithm
for a decentralized architecture until the package reaches all addressees, although we only need to
send 1 bit. In practice, this problem can be solved using a schedule, making communication or a local
step not random, but according to some predefined schedule that all nodes know. For example, once
in 1/p iterations, make a communication.

B Additional experiments

We implement all methods in Python 3.8 using PyTorch 1.4 [26] and run on a machine with 56 Intel(R)
Xeon(R) CPU E5-2680 v4 @ 2.40GHz cores, and on NVIDIA TITAN X GPU with 11,264MBs
RAM memory (Cuda 11.1).

B.1 Toy experiments

We start from toy experiments, the purpose of this experiment is to verify the theoretical results. We
conduct our toy experiments on bilinear problem:

B B
fn(z,y) =2 Ay +ahx + by + Sl = Syl (5)

where A, € R"*", a,,,b,, € R%. We take n = 100 and generate positive definite matrices A, and
vectors a,,, b, randomly, such that . = 5. We take M = 16 and 5 = 0, 1. We use three topologies
of network: complete graph, star and ring. In all experiments, we compare the Algorithms in the
rate of convergence the solution in terms of the number of communications (for Algorithm |- outer
iterations, for Algorithm @] — inner iterations).

o In the first experiment we compare Algorithm|l{with v = % (as in theory) and the different

22
numbers of inner iterations 7' (for subproblem (3)). See results on Figure[3. We see that from the

13



Star communication graph, 16 nodes, A =0.001 Ring communication graph, 16 nodes, A =0.001
o R 100 &

. =

llz=2"112 / llzo = 2" |1

3 40 o 5 5 40

(a) complete (b) star (c) ring
Figure 2: Comparison of Algorithm [T with different 7" on different networks for @)+(5) with
A =0,001.

5 10 15 20 25 30
Number of outer iterations

Complete communication graph, 16 nodes, A =0.1 Star communication graph, 16 nodes, A =0.1 Ring communication graph, 16 nodes, A = 0.1
10%) 10

llz=z" |1/ llzo = 2"

llz=2"112/ llzo - 2”11

00 25 50 75 100 125 150 175 30 00 25

[ 20
Number of outer iterations Number of outer iterations

50 75 100 125 150 175
Number of outer iterations

(a) complete (b) star (c) ring
Figure 3: Comparison of Algorithm|1|with different 7" on different networks for 2)+(3) with A = 0, 1.

point of view of the number of communications, the theoretically optimal number of innner steps Top
is almost optimal in practice. It is also seen that there is a certain limiting 7" after which an increase
in the number of inner iterations does not give a particular acceleration of convergence in terms of
communications (outer iterations).

e In the second experiment we compare Algorithm |2 with v = i (as in theory) and the different
numbers of inner iterations 7" (for subproblem (#)). See results on Figure ]

(a) complete (b) star (c) ring
Figure 4: Comparison of Algorithm 2| with different 7" on different networks for 2)+(5) with A = 20.

We see that from the point of view of the number of communications, the large number innner steps
T > Top only slows down the convergence. On the contrary, a small number of inner iterations
T < Top accelerates, but degrades the accuracy of the solution. The optimal 75, gives a good balance
of accuracy and rate.

o In the third experiment we compare Algorithmfor problem with r = 1 with v = W%
(as in theory) and the different probabilities p = p. See results on Figures [ and

24,2

In terms of the number of communications, the optimal value is p = p = %% (see

Section|C.2.4). But it can be seen on Figures[6] (bottom) and [7(bottom), the probability (frequency of
242

communications) can be reduced. But the optimal p = p = A A (W)

PESCaN I outperforms the smaller
probabilities in terms of the total number of iterations. :

B.2 Neural networks

Our additional experiments are aimed at comparing the operation of Algorithms 1 and[3 with other
parameters r and ¢ (see Table3).

On all plots, then vertical axis — accuracy, the horizontal axis — the number of epochs. 1 epoch =
calculation of the gradient for all batches on the local dataset.

The results show that for other r and 6 Algorithm|1]is superior to Algorithm [3|in training the global
model. Only in the case of frequent communications with the server Algorithm [3|shows better results.

14



(a) complete (b) star (c) ring
Figure 5: Comparison of Algorithm2|with different T" on different networks for 2)+(5) with A = 100.

(a) complete (b) star (c) ring
Figure 6: Comparison of Algorithm 3 with different p = p on different networks for (2)+(3) with
A=0,01.
Top: in terms of all iterations, bottom: in terms of communications.

A T 0| q Results
1/4 40 (1 epoch) 1 | 1| Figuref8|(a)
1/40 | 400 (10 epochs) | 1 | 1 | Figure[§[(b)
1/80 | 800 (20 epochs) | 1 | 1 | Figure[§[(c)
1/4 40 (1 epoch) 4 | 4 | Figure|9|(a)
1/40 | 400 (10 epochs) | 4 | 4 | Figure[9[(b)
1/80 | 800 (20 epochs) | 4 | 4 | Figure[9[(c)

Table 3: Additional parameters for comparison of Algorithm I]and Algorithm 3]

But in the case of Federated Learning, communications are a bottleneck and we want to reduce their
number. Algorithm T|copes with this problem without losing quality.

B.3 Intuition for Neural Networks

Despite the fact that our theoretical analysis captures only convex-concave case, we would like to adapt
the proposed Algorithms for federated training for training neural networks. For simplicity, we will

consider only the centralized case. In this situations, the regularizer 3 [|[vWX|? = 3 Z%Zl |xm —

Z[|? and Apax (W) = 1. Additionally, let us define the smoothness constant of the neural network

for particular dataset as follows: L = ,%, where v, is the learning rate that is recommended to be
opt

used by concrete algorithm for given dataset and neural network architecture. (for example, such
information can be found in tutorials or open-source codes). This definition comes from the standard
results, that for smooth functions the step-size ~ % We do not say that this is a good definition of L,
but we only need it for the intuition. We also mention that we are interested in the case when A < L.

Now, let us start parsing and adapting the Algorithms|[T]and 3]

Algorithm 1} Let us take v = % in Algorithm with constant # > 1. Then line 2 can be rewritten
as follows:

k k 1 k —k 1 k 1=k
Vgom = T — E(xm -z ) = (1 - 5) 2% + PR (6)

15



(a) complete (b) star (c) ring
Figure 7: Comparison of Algorithm 3 with different p = p on different networks for (2)+(3) with
A=1
Top: in terms of all iterations, bottom: in terms of communications.

() (b) (©

Figure 8: Evolution of average accuracy during training process for different parameters of A and 7.
We run this experiment with ¢ = 6 = 1.

Top: presents the results of Algorithm 1| bottom: presents the results obtained by Algorithm [3]
Red line — accuracy of the local model on local train data, blue line - accuracy of the local model on
local test data, black line — accuracy of the global model on global test data. The experiment was
repeated 5 times, the confidence intervals are shown in lighter color.

It is easy to see that the degree of how much we trust the average model depends on €. Next, on line
3, local models are trained taking into account the regularizer:
; (2N E o2 ko2
min max [fm(ux,my uy,m) + 7||uw,m - vz,m” - 7Huy$m - Uy,mH } .

Uz,m Uy,m

In this case, we do not know how long (number of iterations 7) it takes to train the model, but one
can adapt various empirical stopping criteria. The only thing that we note is that we need to solve this
problem with the learning rate 7oy This is due to the fact that L >> \; therefore, we can assume that

the ".smoothness” constant of problem (3) is equal to L and we can take learning rate ~ % = Yopt-
On lines 4 and 5 we again make averaging:

k+1 _ K 11k _ =k 10,k —k

Ty _uw,m+§(§(xm_x )_E(uz,m_u ))
= (1= g5}l o+ ¥ — .

This is the whole essence of Algorithm|l| The only hyper-parameters that we can tune are 6 and the

number of iterations 7.

16



() (b) (©

Figure 9: Average accuracy in during process of learning with different average parameters A, 7" and
r=0=4.

Top: presents the results of Algorithm 1| bottom: presents the results obtained by Algorithm [3]
Red line — accuracy of the local model on local train data, blue line - accuracy of the local model on
local test data, black line — accuracy of the global model on global test data. The experiment was
repeated S times, the deviations are reflected.

Algorithm 3| The Algorithm[3 with = 1 looks rather long, let us for simplicity discuss the main
idea in a centralized setting. We have

S {xfn - 15 V. f(xk, yk), withprob. 1 —p

m zk — % (k- zF), with prob. p,

where p can be chosen according to importance sampling, in which case we have p = % ~ % (see

T
Section . Further, let v = % with ¢ > 1. Then we get an update:

S {1‘];1 — % -Vef(zk yk), withprob. 1 —p
=9 .k
T

m 1 k ~k :

m— g (@, — %), with prob. p

—z%), once in 1 = /\1
P “Yopt

k+1 k

— k
m = Lm

m

Afterward, the algorithm makes a communication: z o % (x

iterations, otherwise make a local step: x};,"" = x};, — 22 -V, f(x},, 4y, ).

Remark. We wrote only about update of 2, the update for y is easy to get in a similar way.
Remark. In order for the comparison of Algorithm |l and Algorithm 3 to be fair, it is nessessary to
balance the number of communications and local iterations for both algorithms, that is why we take

T = Il) =3 L 5 = 170, where 1" — parameter of Algorithm|l|and p — of Algorithm Next, we want to
opt

take & = r = 2. This is due to the fact that we want to level how much each of the local models trusts
the average model and relies on it (see (6)).

C Missing proofs

C.1 Lower bounds

C.1.1 Notation

In this section we present a proof of lower bounds for a class of algorithms satisfying Assumption [3]
However, the problem solved by the algorithm .4 has a decentralized structure for only one group of
variables, without limiting generality, let these be variables y:

x€ERMnz ycRMny 2

M
) 1 A
min  max {F(x,y) = E Jm(@my Ym) — yTWY} ) (7
m=1

17



where x" = (z{,...,2),)andy" = (y{,...,y;)> Tm € R™ and y,, € R™ for any m €
{1,..., M}, matrix W = W ® I,;, where W is the gossip matrix (see Assumption |Z). Moreover,

‘W satisfies the same properties of gossip matrix:

1. W is symmetric and positive semi-defined matrix;
2. W, ; #0ifandonlyifi= jor (i,j) € &;
3. kerW is consensus space;
4

. )\max(W) == )\max(W) and >\+ (W) = )\+

min min

eigenvalue and \,.y is the largest eigenvalue;

(W), where \I. is the smallest positive

min

It is worth noting that for the simplicity of the proof, we work in vector space, unlike other sections
where the proofs are carried out in matrix notation. But we would like to assure the reader that the
structure of variables does not affect the results in any way. We would also like to draw the attention to
the structure of the problem (7). We consider a simplified formulation of the problem when compared
to the original one (2)), but this only means that the lower bounds for the original problem (2) will
look either similar or more complicated than for a simple formulation (7). Fortunately, the upper
bounds for the problem (2)) coincide with the lower bounds for the problem (7)), which leads us to the
following conclusion: the lower bounds are the same as for the problem (2).

C.1.2 Proof of Theorem[I]

As in many papers we give an example of a "bad" function on which algorithms satisfying Assumption
[3 converge at least at a rate that coincides with the lower bounds. We consider a linear graph with
the number of nodes equal to M = 3 L%J where x = Amax(W)/)....(W) is condition number
of communication network G. Let us divide the nodes into three types: the first type includes
V= {1, 2,00, %} the second type includes Vo = {% +1, % +2,..., %} the third type
includes V3 = % + 1, % +2,..., M} Let n, = ny = n = 2T dimension and 7" more than
M . Next, we define
Sllal® = 5yl —ay(1) + *FaT Ay, ifmeVy
Jm(z,y) = %||x||2—%Hy||2, itm eV, (3
Sllal = §lyll? + SaT Azy, ifm e Vi,

where matrices A;, Ao are defined as follows

0 0 0 ... 0

Ai= 1o 0 <C _C> and

For the gossip matrix, we take the Laplacian of a linear graph. Then, for our problem, we get that the
matrix W will have the following form:

WZW@IM,

18



where matrix W € R™*" has following form
1 -1
-1 2 -1

“ 1 ) -1 2 -1

212 -
1

It is easy to make sure that this matrix W satisfies the assumption of the gossip matrix. According to
the definition of functions, now we can write the form of the objective function of problem:

Uy o oo VA g AT
F =— | = - = —x My — m(l) | — =y Wy, 9
(x,y) M<2||XII S lIyl? + ="My a";y() YWy, O)
where M looks like
I® A 0 0
Mz( 0 0y, | 0 )
0 0 I® A,

To obtain lower bounds, we will find the dual function of our objective functionF'(x, y). But before
that, using properties of Kronecker product, we note that

I®ATA 0 0 I®A? 0 0
MM = 0 0,1, | 0 = 0 0.y, 0
0 0 I® A;AQ 0 0 I® A2
I ® B 0 0
=2 0 O vy 0 ,
0 0 I ® Bs
where matrices Bi, Bs are defined in such way
0 0 0 ... 0
2 2
o (5E)
_ - . :
b= 0 0 (—62 2 > T : and
0 o b?

By

I

o
/l‘\
a %
[
o |
v Q

[\v)
~

The dual function ¥(y) of our objective function F'(x,y) is

; 1 A T T BT AT
U(y) =minF(x,y) = -7 <8My M My—a%; w() = 5y'y | -5y Wy.
Therefore, we obtain v
I+
T‘I’(Y):*iy CY*a;yi(l)a
1€V

where C = MW + £1 + ﬁB and

I ® By 0 0
B = < 0 Oangl 0 ) .

0 0 1 ® B

19



Now, we are ready to present the problem

M 1
7\11 = —— TC — i 1 . 10
m}z}x{)\ (y) 2}’ y aZy()} (10)
i€V,
Due to the fact that the functions of each type are similar, their maximums coincide. Therefore, we
denote them as follows
z*, ifmeW
argmax {min S (u, v)} =y, ifme,. (11)
Y z*, ifmeVs

Now we give a proof of the lemma that indicates a recursive connection

¥4

X
w; =

T

zZ,

wit1 = Quy, (13)

1 (£)+¢
Q= 2\ w1 o (2Y4r41)? 2 ’ (14
gt o0 (g )

Proof Let’s write down the first-order optimality conditions for the problem

Lemma 1 (see [9]) Let

) if i is even
(12)

Sop S S Sy

) ifiis odd
Then, we have

where

o

2 u 1\, [ ,
<2u+)\+2)$272MI2Z+12y210, fOrOSZSTfl (16)
<2M + \ + 2) Zoi_1 — ﬂz% — iy%_l =0, for1<i:<T—-1 (17
A w1\, 2, 1, .
<2M+)\+2)Z2i_mz2i—1_292120’ forl<i<T-1 (18)
A .
1—1—7 y; —x; =0, forl <i:<2T -1 (19)
A ,
1+7 y; —z; =0, forl1 <:<27T -1 (20)

Combining and (18), we get forall 1 < ¢ < T

2 1 1
2% 0 25\ _ 57 +3+ % -2 254 (21)
S 1 _p 1) \ys )T &2 Y5
-52—35—5% 3 2 ~a 0 2i—1

Rewriting this equation, we get

S

c 1
1 siti+s
* c? <2 *
224 _ 2% ) 2, Y2i—1
* - o2 . - 1 * .
Y2 Srutl 2(g+i+) 2 Z2i—1
- o2 <2 T 4ou
20 20

20



Similarly, using (15), we getforall1 <i<T
Si+d
i -4

* c
T2i41) = L ) )
c sy py 1 .
Y2it1 srerd 254+t 2 | \"2
- 2 2 - 2@
2n 2u
Using (19) and (20}, we obtain
C2
_ 1 spthts
2 =
$§i+1 25: (143) Z g 29
* = 2 ey *
251 _ iR g2 2(5+4+1) Y 3,
2 A <2 2p
2u 2p
2
_ 1 5it5+3
c2 24 -2
23; 26; (1+3%) kT , x5
— C2 c 1 M
3, sati+s 14 2 2(27‘*‘%"’5) &2 254
—E 1+ ) | ~ o
20 20

Then we have

For simplicity, we introduce the following replacement ¢ = 5—
_ 1 cHE+5
Q 2e(1+32) c 22)
- cri+d oy [2(e+45+3)°
—E (g (A

The following lemma would be very difficult to prove without using Mathematica due to very

cumbersome expressions. The following statement shows a recursive relationship between coordinates
i=Lwy, where 7 is the eigenvalue of the matrix Q.

in the following sense w; = -y
5/2

St L > A (W) +

Lemma 2 (see [9]) Choose ¢ = { (Mmax(W))* FL 2 Mma(W) s>1,(6=<)and
St L < Munax (W 2
a7 L < Mimax (W) +

1+2 ([ —(1+24)w N —a+2ya?—48 R @3
4(1+24)(1 +2¢+254) 2 A

b= _
2\ 2(1+26+25)

Then, we have b > 0 and
i—1 0 )
w; =7 wy # 0 fori=1,2,...,d,

where
@ Vie? —48) 10\[ (24)

7 8c(1+28) s8¢ (1+2“

[ 2
1444 MUex — 1 24(f) 4 (f)
+4c c+8)\+ cx 60)\4— X +80)\

1622 (%)2+32 (’;\‘) +32 (4 ) +16 (%)
B = 2484248 +16 (5 ) +4sc () + 962 () +4 (%)
+965(§)2+9652 (X) +64( ) +64c (%) (94
. () s (1)
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Proof. First, using the Mathematica software package, we calculate the minimum eigenvalue vy of the
matrix W and prove that it satisfies the inequality. For a detailed study of the proof, see the file or
screenshots

Using Mathematica, we find the eigenvector v of the matrix () corresponding to the eigenvalue -y

—(14+24) —at2y/a?—43
v = + 4(

2(1+2c+2%) 14+25)(142c+2%) (25)
1

Now, using Mathematica, we prove that b > 0

It is easy to see that when choosing the parameter b according to (23)), the vector w; is proportional to
the eigenvector v of the matrix Q.

O

Now we are ready to complete the proof of the theorem. Let y® = 0 € RM™_ It is worth noting that
after N iterations of the algorithm 4 satisfying the Assumption y” has no more than 5/a nonzero
coordinates, where S is the number of rounds of communication (consensus), A is the diameter of
the network G. In our case, A < VX Then, using the equations , , we get

2
n . n 112 A *\2
ly™ —y*|? > 1 Zi:S/A+1 [Jw; ||* + (yj)2 1 Zi:S/AJrl [Jw;* + (u+>\) (v7)
Ty =yl = 2 S w2+ 2 2 i
vl S s+ ) S sl + () 502

J
EZ?:S/A-‘,-I ||R7~DjH2
2 Yo [[Rwl2
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1 0

where R = 0 - ( /\/\)2 and w; = (xj,zj) (w; = 47~ tay). Tt is not difficult to see
pt

that the matrix is positive definite and symmetric. Therefore, you can use it to define a new norm
|lw|lr = v/{x, Rx) and use the properties of the norm. Then for large enough n we have

Iy = x 2 L RGP 13 s VR

=l = 2 SLIRGP T2 XL, Rl
S iy

2 YTt 2 iy

5/a
1S/A1_'7nis/A 1 \/T
L St S VIS T e B
27 T1 o T 05

It is worth noting that according to our choice of the structure of communication network G, we have
that A </, then we obtain

S
Iy —y*|I? 1 1—10\/T /Allyo—y*HQ
4 5
5/vx
1 1
- 1_1 - O_ * (12
4< o\/;> Iy~
S
1 1
> —(1-104/— 0 y*2.
> 1 (-wyf5) -y

Now we have to consider two cases: one when L > AApax(W) + pu, the other when L <

Mimax(W) + 1. Moreover, we must select the parameter § in such a way that 6 > 1 but also
c<1.

Y

Y

* L > Muax(W) + g if we take § = "‘a"(wﬁ)b’\’\‘““‘( ) then we have ¢ < 1 and

S
1— 10 0 _ *(|12

* L < Mmax(W) + p: if we take 6 = (L#”) then we have ¢ < 1 and

(1-10 ﬂ)s Iy° —y°?

Summing up the results obtained above, we can conclude

S 0 * |12
S (R SR | WA
CARE A Muax (W) (L= 1) /X i

C.2 Optimal algorithms

lyY =y |* >

A~

| =

Iy™ —y*I* =

C.2.1 Notation

We will use matrix notation in our proofs, as in the main body of the paper. It is easy to check that
the matrix notation in this case will not differ greatly from the standard vector notation; it is enough
just to move from the Euclidean norm to the Frobenius norm and from the scalar product to the trace:

1XI = a2 4+ llearl®, [T ()] = donm) + o+ @aryn),

where x1, ...,z and yy, . . ., yps — vectors from which matrices X and Y are composed according to
Section 2.1. Additionally, we use matrix of the solution X = [z*,...,z*]T and Y = [y*,...,y*]T.
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It is also easy to make sure that the functions f and  are

e smooth: f is L - smooth, ¢ is Ayax (W) - smooth;

e smooth: f is u - strongly-convex-strongly-concave, ¢ is 0 - strongly-convex-strongly-concave.
C.2.2 Proof of Theorems[2]and

Strongly-convex-strongly-concave case

Lemma 3 (for Theorems2]and[3) For Algorithm|l]it holds:

x4t =X e -y

]2
< (1 =) [|X° = X[+ (1= ) [YF = Y]
A A max 4 o112
# (2 PRl S i o)) o - o
[ o
N 2
— (1= 3y — 47N (W) || X* = O]
A A A max 4 o2
+ <2+ DM max(W) 4y oyaye (g )) ‘ Uk - ik
7 olL v vl

12
— (1= 3y — 4° N A2, (W) HY’“ - UL“H
F
Proof: Let us use additional notation WF = UF +~ - X (WX* - WUEF) and W} = U} + -
A (WY’“ — WU;) for short. Then by non-expansiveness of the Euclidean projection, we get
x4t =X e -y

= [[proi [17£] — proie [X || + [lprojy, [1%] — projy, [¥ ]|

< |[wk - x|+ Wi -y I

= [[x% = X[+ 2 [(WE - X) T (x5 - x|+ W - xR
+ [V =y 2 [ (v - ) (VE =y + Wy =Y

= |t = x|+ 2w [(WE - x9)T (0 - x7))]

+21tr [(Wf —Xk)T (Xk - Uf)} + Wy _XkHF
=y 2 [ -9 (08 - 7))
+2u (W YR (YR O8]+ WY

= X% = X[+ 2 [(WE - x5 (08 - x7)] + |wik - OF i

IR w2 T [~ «
=[x O] =y 2 [y v (0F - )]
~ 12 ~ 12
M I i

= || X" = X+ 2w [(OF 4y A (WXE - wUE) - x5 (0F - x|

T v e b e
F F
+[YE =Yy 2w [(UE 4y A (WY —wul) v (0F - 7))

2

2
k rk k rk
n ’Wy — Ut ‘F— ’Y — Ut

F
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_ ||Xk_X*}]i+2tr{(U§+7'AWXk )T (Uk *)]

Wk — Uk

+ 20 [ (—y - Awud) " (0F - x| +

HYE =y 2w (U Ay E - yE) (U’“ )]

HXk Uk
F

vau[(—y 2w (08 —v)] + |- o - - o]

With expressions for V¥ and Vyk in Algorithm we have

[

2
- X HF'*‘HYIH1 v ||F

< | X* - x| 42 |(UF - vE)" (0 - )}
|+

+ 21 | (= awud)" (UF - x7)

Y=y 2w (U - Vk)T(Uk )}

HXk Uk
F

20 [(—y o) (OF - v)] + HWj—UjHi— [v* —UjHi
~xt xR 2 [(Uf —v)" (o _X*)}
+2r [(U’“ - U’f)T (0% - )} +2u [ (—y - Awud) " (0F - x7)]

F

+v* -y ||F +2t [(Uj - vj) (0 - Y)}
+2t {(U’“ = U’“)T (0% - Y)} +2u (= Aawop) " (0F - v)]

+||Wy - Uk

‘Yk Uk
o

According to the optimal condition for U’“ and U k. forall z € X, y€Yand X = [z,..., x)t,

we get

.....

tr {(7 VxfUS U5 + Uy - Vﬂ”k)T <U§ a Xﬂ

g [(_7 Oy O 08 + O~ v (0 - y)} <0,

x4 =X e -y

< |lxF - x*|% 4+ 20 [(—7 Vx f(UF; Uj))T (0% - X)]
21 [(Ug’;’ - Uj;’)T (Uj - X)} rouw [(—7 AWUE)” (Uf - Xﬂ

2
k _ vk
+ (|W, = U; -

g

N T [(7 Oy fE0) (08 - y*)}
+2t [(Uj = U;)T (0% - Y)} +2u (= Aawup) " (OF - v)]

~ 2 N 2
wi =], - |+ - o]
+H v YllF Yl
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= [[x* - x|

+21tr
+2tr
+2tr
+v*
+21tr
+2tr

+21tr

sy )
[EELONCES)
'<_7 AWk - 08" (0% - X)]

(02 02)" (02 )] o | -2

2 el
F7HX —Us

F
vl (3 vy s@ton)” (05 -v)]
[ERUORCES)

(= -0 (05 - y*)]

(- 05)" (@ -v) |+ - ail - -l

With property of the solution X*, Y*: forall X € X, Y € Y

tr [(fo(X*; Y4+ AW x s (X* - X)}

[Ty YY) =y )T (1 - )] <0,

And then p-strong convexity - strong concavity of f, we obtain

||Xk+1 —X*

R L el

< [[X* - x|

+

< [la* - x

_|_

+

L=yl

Yy

21r (7- (Vx fUFUFY + \WUF - Vx f(X* 7 — AWX*))T (Uj; - X)]
2tr —(7-)\1/[/(UJUc - IAJ;“))T (Uf —X*)] + HWf - Uk )
e (or-of)” (0t - x0)]

2tr -('y~ (~Vy f(UETF) + )\Wﬁj + Vy f(X*Y7) = )\WY*))T (ﬁk - Y*)]

zr Yy Yy

F

x

HXk_Uk

2ue| (< aw s - 09) " (0 - y*)] + s —op|
e () (o)

Uk - x*

F

k rk
HY — U

vy 2

~k .
U, -Y

2
—2w‘
F

2
F—2w‘ .

| (v W@ - 08 - 0t - o) (0% - x°)]

2 2

|wik - 0

‘X’“ _pk

F_‘ F
21tr {(’V AW(UY - Uy) = (Uy — U?f))T (U'f a Y*)]
Jwi —ox] -]l

26



By Young’s inequa

lity, we have

w2 w2
HXkH -X ||F‘+ HYkH Y HF
< It = X = = 2o O - x| - 20 - v
+3H AW (UE = OF) — (UF - U’“) + 2 ok - x|,
i Y x x F
T v e b
F F
2 i TN [ o7
+%H7-)\W(U§—U§)—(U§—U§) L+ ||os v
k_ vk 2_H K prk|?
+we o], - - o],
< ||x* - i+’|yk_ X 3;# X* . _ 3 HUk Y* .
+iH7-)\W(U’“—U§) gt ‘ — o
o P F
Egy X (WXE - WUF) - OF i_HXk_Ufi
sallvs =0+ v -op)
o |vs -~ 0 e L]
+ O A Wy - wu) fU’CHQ — ||y - o ]1
|2 3WL X+ 2 . 12
<X =X+ V=Y - . |10 =YL
+iHy-AW(U§—U§) ’ +<2+4>}U§—U;§ ’
Vi F Vi
2|l A (wxE - W) - | x* - U’“
N “ 2
+<2+74/;> HU;“—U;“‘ +—H7-)\W(U -9,
2]y A (WYR - woR)| - ||y - Uk
Then we use Ayax (W)-smoothness of ¢
I — X+ Y v
2 2 3| . 3V || A L2
S R M PRl o Uy It s e
AN N ax (W) k|2 4 ko prkl?
. ’ O F+<2+w> Uk — ik
£ 2NN (W) || X5 U2 — % — 0|
B k _ 71k 2 47)‘2>‘max(W) ’ k Akr
+<2+ >HUy o R i
N 2
+ 2L W) [V - U~ Y- 03|
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- koyel2 S ke e ||P L SYE Ik P
< || XP-XF L+ Y-y |F_T U = X7~ |0 — Y7,
AyN2N2. (W) 4 2
+ <2 + 2 (W) 2 472A2Aiax(W)> vk - o

1 Vi F
N 2
— (L= A2, (W) X" - 0|
AVN2N2. (W) 4 N
+ (2 ¢ 22 2, 472A2A?nax(W)) o =
Vi F
2
212412 k Sk
- (1 _47 A )‘max(W)) HY _UyHF'

By inequality || A + B||% > 2 || A||3 — 2| B||3, we have
2 k+1 «][2
P HY -V F
2 *
st =) Y-y

HXk—f—l _ X*

. . 2
<(I—qp) | XF-X -

2
F

max
I

(1= B9 = 492NN (W) || X* - O

NN (W) 4 i
+ <2+ 1A A )+w+472>\2)\2 (W)) vk - o

2
F

1NN (W) | 4 e
+ (2 ¢ 22 mW) | 2 +472A2A?nax(W>> o -0
7 o v vlle
2
241242 k Tk
_(1_3/\”1/_4’7 A )‘max(W))HY _UyHF
(]

Lemma 4 (for Theorem[2) Assume that for problem (3) we use extragradient method with starting
points X* Y* and number of iterations:

1
T=0 ((1 +~L)log 5) . (26)
Then for an output u* it holds that
. 2 12
vk -0 + |[v* - o )
F F

Proof: The proof follows from the convergence estimates for the extragradient method and the fact
that Problem (3)) is 1-strongly-convex-strongly-concave, as well as (1 + ~L)-smooth.

oo -0 <3 (e -0

]

Remark. As mentioned earlier, problem is divided into M local problems, which are solved on
each of the machines separately.

Note that Algorithminvolves the absolute precision 9, 4 is the relative precision - a more convenient
value for practice.

Theorem 6 (Theorem [2) Assume that problem (3) be solved by extragradient with precision o:
1

S =
47)‘/\max(W) 4 2
2 (24 DMmex(W) -y 432 AN (W)

27

and the number of iterations T (see ). Additionally, stepsize y is

1 1
= 1 —_— . 28
o { 121" 16 M hmae (W) } (28)
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Then Algorithm IZ converges linearly to the solution z* and it holds that ||X’“+1 — X*Hi +
HY"“"‘1 —Y* i < ¢ after

X0 — x*|2 4 [[vo — v
K=0 (}Y'u H HF 2_ ” ||F> iterations. (29)

Proof: Combining results from Lemma|3|and [4] gives

e RN L ol

< (1= ) X% = X5+ (1 =) [Y* = Y7}

4yN2\2 4 = e
+ (2 2 max(W) 4+ — +472A2A12nax )> S HXk: _ Ua}f R
Vi

— (1= 3y = 42 N2A0

~ 2
Wy [ -0,

422 (W) | 4 . e
+ (2 + 22 W) e )) 5|[ve -0k
[ Vi F

2
21242 k rk
- (1 73")/”74/7 A Amax(W)) HY 7Uy F.

With the choice e from (27)), we obtain

HXk-‘rl _

P+ Y-y

< (1 =) | XF = X+ =) IV =Y

1 N2
N ) 2)\2)\2 HXk Tk
<2 3yp — 4y A" Ak ( )> Uz |

1 21242 kel
- <2_37ﬂ_4’7 A /\max )> HY _UyHF
The proof is completed by choosing ~y from (28).

O

Remark. (29) also corresponds to calls of ¢ gradients which in turn corresponds to the number of
communication rounds. Substitution of (28) in (29) gives that

0 X* 2 0 _ %2
o <<1+ Manas (W) )k)g Ix° - ||F:||Y Y F>_
n

It is also easy to estimate the total number of local iterations on each node:

0 «||2 0 _ v=* 2
KxTzO(l (1—|—’yL)log log |x° - x |F+HY Y F)
Vi 5 €
0 P 0 _ yv=* 2
(4 + e B V)
oop 5 €
XO X* 2 YO—Y* 2
:O<<me<w> Y o] )
I [t 5 £

0 %2 0 _ w2
(1 £) e g B BV
7 5 €

The last follows from the fact that we consider the case of small \.
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Lemma 5 (for Theorem [3) Assume that for solving the problem (3) we use Randomized Extra Step
Method from [1|] with starting points X*Y'* and number of iterations:

)y,

T=0 r+ log = | . 30
pr L (30)

Then for an output u* it holds that
2
‘ F) ’

Proof: The proof follows from the convergence estimates for the Algorithm [I|from [1]] and the fact

2

L2 “ - ~ 112 o
Uk - Uk F+‘U5—U5 Fga(HXk_U;; F+Hyk_U§

that Problem (3) is (u + %) -strongly-convex-strongly-concave, as well as (% + L) -smooth.

]

Remark. As mentioned earlier, the problem is divided into M local problems, which are solved
on each of the machines separately.

Note that Algorithminvolves the absolute precision 4, 4 is the relative precision - a more convenient
value for practice.

Theorem 7 (Theorem [3) Assume that the problem is solved by Randomized Extra Step Method
with variance reduction method from [l1|] with precision §:

= 1
0= N2N2 (W) G
2 (2 4 2YA A + 4 + 472)\2)\1211“(1/[/))
n Y
and the number of iterations T (see (30)). Additionally, stepsize -y is
1 1
—mind . 4 32
R { 121" T6Mvmax (W) } 32)
Then Algorithm IZ converges linearly to the solution z* and it holds that HX’H'1 - X" 2F +
||Yk+1 — Y*H? < ¢ after
2 2
1 X0 — X+ + ||y -y
K=0|—log H £ H | £ iterations. 33)
Y €

Proof: Combining results from Lemma[3|and [3] gives

[ ol A | e
< (1) | X% = X7+ (1 =) [Y* - Y7}

4yN2NE (W
(24 DlV)

— (1 = 3yp — 492 N2\2

max

4 . N2
+—+ 4v2A2A?nax<W>> |x -0
Y “lr

wy ek - oz

2y)2 ~ ~ 2
+ (2 402 W) 4 4v2>\2)\fnax(W)> 5|[vr -
[ Vi F

2

max

— (1= 3yp — 4922202, (W) HYk - U;f

» .
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With the choice 0 from (31]), we obtain

B I Ll

< (1) | X* = X5+ (1) [YE =Y
- <1 - 37” 472A2)‘12nax )> HXk - Uf :
2 F

1 2
(2 3yp — 4y NN ( )) Uy

The proof is completed by choosing ~ from (32).

Remark. also corresponds to communication rounds. By plugging into gives that

XO_X* 2 YO—Y* 2
K:cf)((uMmjj(W))log H F:H F>.

It is also easy to estimate the total number of local computation on each node:

\ﬁ L+1 X0 _ x* 2 YO _y* 2
P B G CR) A W W B S S [
TH M‘f‘; 5 €
XO_X* 2 YO_y* 2
<O 1 r—i—ﬁ—l-i\/FLl logllog“ F+H [k
Y Bt ) €
XO_X* 2 YO—Y* 2
C oL (vt L ) tog Liog | I + v
TH +; 1) 9
XO X* 2 YO—Y* 2
TH max{u,%} 5 €
o2 VrL 200 = x5 + Y0 = v
-0 <W (7” - max {1, )‘)‘maX(W)}> g 5 B tog €
W 0 = X[+ 0 - v
<O <’7/~L (r—l— )\)\maX(W))logglog 5
Lo (1 MY (VL1 (X = X -
- [ " Mo (W) gg °8 e

. X0 X2 |y - v’
—-0 <(T)\AmaX(W) + \/’FL) logilog H F+ || |F> .
p p 5 e

If \/r A max (W) = O(L), the total expected number of local gradients becomes optimal.

Convex-Concave case
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Lemma 6 (for Theorems2]and[3) For Algorithmll]it holds:

2y 1r (VS (UE UF) + aWUE) T (UF - X7)]

x Y

+ 29 1r [ (= FUE UD) + W UE) " (UF = )]

)Ty

<t X v

2

P L G el

+ 401+ 9L+ P nax(W)IVM(Q + G) (IUF = OF |l + 10F — US| )

(24 42NN, (1)) (‘

— (1 — 47?222

2 (x4 - 0

k _ frk
Uy—Uy

)

2 R 2
Y’“—U’“H .
F+H Yllp

" 2
Uk Uk F+‘

(34)

Proof: Let us use additional notation W} = UF +~ - X (WX* —WU}) and W) = U} + -
A (WY*® —WUF) for short. Then by non-expansiveness of the Euclidean projection, we get

2 2
S PR LA

= [[proie [1£] — proie [X*J||7 + [lproiy, [17] — projy, [¥ ]|

< |wE-Xx*

-t

+ || Y*

- Jxt - x

P Wy -y

w2 [(WE - x*)
o2

— |2 (W = YR

w2 [(wh - xh)" (0F -

2
F

2
(XF = X7) |+ [|wy - X*[
T

T X+ j|
YRy - v
T k X* :|

)

v (W - x0T (X 08)] + k- x|
Y=y 2w [ v (0 -y
rou (W —v?) (vE-of)] k- v

w2 [(wh - x)" (0 - X))

2

-

~ 112 ~
||k - o] - || - o

‘ F F

+ HYk _ Y*Hi“ +21tr {(W; _ Y’“)T (Uj B Y*H

2 2

k rk k Frk
+|we -] - v+ - o

‘F ‘F

= [ X" = X+ 2w [(OF 4y A (WXE - wUE) - X (0F - x|

2 2

32

Yy

+ |k - 0| - |x* -0k
F F
+[YE =Yy 2w [(UE 4y A (WY —wup) v (08 - v))]
12 ~ 112
WkiUk‘ 7’Yk7Uk‘
Jr’ Y Ylir YilF



_ ||Xk_X*}]i+2tr{(U§+7'AWXk )T (Uk *)]

Wk — Uk

+ 20 [ (—y - Awud) " (0F - x| +

HXk Uk
F
+[YE =Y 2w [(Uf 4y AawYE - YR (Uk )]
T (frk * K k| K rrkl]?
2 [(—y2wup)” (O -v)] + |wh - o) - [ve -y -
With expressions for V,* and V" in Algorithm we have

2
B R L ol

< || x* = x|+ 2 [(UE - Vi) (0F - )]
+2u [ (= awuh)” (0F - x7)] HX’c ot .
R *)]
+2u [ (—y - awug) " (08 - v))] —HY’“—UZji

:||Xk—X*||i+2tr{(0£—ka) (Uj;—X*)]
+2ur _(U’“ —Uk)T (0% - )] + 20 [(—y - awuh)” (0F - x7)]

HXk Uk

F

+ v -y HF +2t [(U,jj - Vyk) (0% - Y)}
+2u [(Uj - Uj)T (0% - Y)} +2u (= awug) " (0F - v))]
s - o, - e -a
According to the optimal condition for U¥ and U%: forall X € X, Y € Y
w| (v Vsl + 0t - v2)” (0f - x)]
o [<_7.vyf(ﬁfj;ﬁj) voE—vp) (0% - y)] <0,
X4 = 2+ YR - v
< o= 2 [(r s @k o) (02 - x)]
+21r [(Uf - Uj;)T (0% - X)} +2u (= Awud) " (0F - x7)]

2
k _ vk
+ (|W, = U -

g

N T [(7 Oy fOE0) (08 - y*)}
+2t [(Uj = U;)T (0% - Y)} +2u (= Aawup) " (OF - v)]

~ 2 N 2
wi =g, - |t - o5,
+H v YllF Yl
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Small rearrangement gives
2 tr [(V F(UE US) + AW U (UF - x7)]
Yy

+ 2yt [ (= JUETE) + WU (UF = 7))

112 112 w112 wl]2
< X = X+ V=Y = X = X = YT =y

+2ytr (fo(Uf?U.f) - VXf(Ug;U?]/C))T (Uf - X*ﬂ
+2vtr :-(VXf(U;f?UzI/C))T (Uﬂ]: - U’];)]
vaye (Vo085 - v swssod) (05 - v)

+ 2y tr

(T rU ) (08 - 0F)]
Lo [(Uf o) (o - X*)} w21 [(—y AW (08 - 0F)]

+2t [(Uj = U;)T (0% - Y)} +2u (= 2awop)" (OF - vf)]

+ w0 L [~ 0 ’ +HW5705H2 N ’
F ' P F
< [|lxF = x| YR -y = X x| - Y -y
+ 2| Vx U UE) = Vx fO5 05 e - |05 = X* |5
+ 29|V F(UE U - |UE =T |lm
+29||Vy f(UEUF) = Vy f(US US| - IUF = Y| p
+29||Vy fUE U |p - |UF — Ul

+ 20U = UFlp - 105 = X" [lr + 29 AWUE | p - 10 = Uxllr
+2|Uy = Uyllr - 10y = Y*llr + 29I AWU[|p - |0y — Uylle

~ 2 N 2 N 2 ~ 2
BEICatd P et P Lt P it
F F F

» .

With definition of W} and W; we get

x) Yy

2yt [(Vx (UL UE) + 2w Uk) " (Uk - x7)]
+ 2y |[(~Vy f U5 U + W) (Uf )]

T Yy

* 2 * 2 2 * 2
S e P R [Pl P S e e i

+2|IVx f(USUS) = Vx (U5 TN |- |UF = X*|r
+ 2| Vx FUS U - UE = Uk e

+29|Vy f(USUF) = Vy fUSUN | p - |UF = Y|
+ 29| Vy F U5 U e - U = Uglle

+2|Uf = Usllr - |UF = X* o + 29| AWUE || - |US — US| e
+2Uf = Uflp - |UF = Y|l + 24 AWUL | - |Uf = Up|lr

~ 2 ~
+ oy x (wxt - wuk) - O . HX’“—Uf .
2 2

k k k rk k rk
+HUy+7.A(WY —WUy)—UyHF—HY 0 ‘F
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<IxF = X+ Y-y = X - X - YR -y
+ 2| Vx fUSUY) = Vx F(U5 TN e - 1T — X e

+ 29| Vx fUE U - UE - UF e

+ 29| Vy f(UEUF) = Vy fUEUN P IUF — Y| p

+ 29|V fUEUD e - 1T — Ukl

+2UE — U\ p - |UF — X* || p + 29[| AWUE |7 - ||UF — US| p
+2HU5—U;“HF~IIU;“—Y*IIFHVIIAWU’“IIF-IIU’“—U’“IIF

I

*Uf

i+272||A(WX’C—WU’C - | x* - U’“

+2||vk - Uin + 292 |A (WY’“ — WUF) ||F ~ |- U’“

e

IN

X = X+ Y =y = = X
+ 20V MQ|Vx f(UE,UF) - fo(Ufi; U;“)IIF
+ 29V MQ||Vy f(UF;UF) = Vy f(US;UP) ||
+2@+7L+%Mm4ww¢ﬂﬁm+®(wﬂ—ﬁwF+wﬂ—Umw)

_U§

i + 22 ] (Wxk - WOk - ||x* - U’“

+2||vk - U{in + 22 |yt - wup|fh - |[vF - Uk

Here we additionally used the diameter {2 of Z and assume point Z, g, s.t. [|Z|| < G, ||§]] < G for
some constant G.

Then we use smoothness of f, ¢ and obtain
2yt [(Vx (UL UE) + aWUk) " (UF - x°)]
+2y tr[(—vyf(Uk Ul +awus) " Uk -y
F + Hyk -y |F - ||Xk+1 -
+4(1+ 7L+ YA nax (W) VM (Q + G) (HUj ~Uslle + 11Uy — U§||F)
2
)

2 2
Y’f—U’fH .
F+H YllF

<Xt -

2 2
X |F - HY]~C+1 - Y*HF

21212 rk
+@+MAMWMW( 0}

2
Tk
_Um
F

max

— (1= 420202, (W) (HX’“—UJ’;

Theorem 8 (Theorem [3) Assume that problem (3) be solved by extragradient with precision §:

= min ﬁ : <
0= { IMmax (W) 24 (Mmax (W) + L) VM (Q + G) } 4

and number of iterations T':

Q2
T=0 <(1 ++L)log 5) . (36)
Additionally, let us choose stepsize 7y as follows
1
7T 2 (W) 7



It holds that gap(XE | Y.E ) < ¢ after

avg’ * avg

ax XO_ 2 YO—Y* 2
Ko (AAm (| + |

F) > iterations, (38)

where

gap(X,Y) = {/r}:g)l(;f(X7 Y') - )Erllér}y F(XY).

K
and X(ﬁ;g =K Zk 0 Uk Yalgg - K Zk:o Uy

Proof: Summing over all k from 0 to K
X T
23" (w (Vs @k Uk) + W) (UF - x7)]

+ | (~Vy S UEUH +awog) T (Uf - v)])

< Jx° - x5+ Y0 -y
K
+4(1+ 7L+ Y Amax (W))VM (2 + G) Z(|Uk 0¥l + |0 — U_,f\\p)
k=0
K o e
+(2+ 4920202, ( ))ZQ - Uk F+HU§_U§HF)
k=0
21242 - e Akl e el
IR PCCIN >>I§(Hx o+ |y ‘UyHF)
With our choice of
K
_ k. 7k T 17k
)\)\max(W)kz_()(tr{(vxf(Um,Uy)+>\WUT) (Uk X)}

Yy

+ | (~Vy SOk Un awog) (g - v)])

<10 = X5+ [y - vl

K
# E_ frk Sk k
+4<2+ A)\nlax(W)> Q+G Z()('Ua: UI||F+HUy UyHF)

K
+3Z( —OF +HU’“ U’“H >
k=0
Then, by XX = LS/ U and YK, = £ 5% UF, Jensen’s inequality and convexity-

concavity of F’:

gap(X gy Yang) < g}lgggF( <Z Uk) ’) —yégF< (Z Uk))

< = FUr Y- — Y F(X',Up).
Py Z i Z

Given the fact of linear independence of X’ and Y':
1 X

K K k
gap(Xavgv Yavg) < (E}a})},) ? ];) (F(X 7Y/) - F(X/a Y )) .

36



Using convexity and concavity of the function F:

K

1
gap(X5g: Yiog) < B 7 ,;:0 (F(U;,Y') = F(X',U}))
| X
_ k k rrk k rrk k
= max ;:O (FUE,Y') - F(UE, UY) + FUE,UY) - F(X',UY))
1 & T
E k.rrk I 17k
= ()I(I}%z(’) K k=0 (tr [(VYF(Ux’Uy)) (Y Uy)]

+ 1w |(Vx Pk UD) " (UF - x1)]).

Then
2 2
Mumax (W) (|| X0 = X*||7. + [|[Y0 = v*[|)
gap(Xgug: Yaug) < H i H £
K
8 (Munax(W) + D) VM@ +6) Y (IUE = Tl + 1105 ~ ULl
k=0

_ Uk

K
+ 3 nax(W) D (‘
k=0

§ from and K from are completed the proof.

2 2
k_ frk
Pt HU-” B U7’HF> ’

O

Remark. (38) also corresponds to the number of communication rounds. It is also easy to estimate
the total number of local iterations on server:

, X0 — X2 4 ||y — v :
o (AAW(W)(H e H r) (1 +7L)log )
N 0 el 2
:@<Xmax<W)<HX X =) (1+L) ng)
€ 0 0
L XO— X2 4| y0 - v ’
o <( + Mumax (W) (| - et g g?; )

<L(HX0—X*
=0

The last follows from the fact that we consider the case of small \.

2
YO Y* 2
9

Lemma 7 (for Theorem[3) Assume that for solving the problem (3) we use Randomized Extra Step
Method from [1)] with starting points X*,Y'* and number of iterations:

Vr(L+1
T=0 7”—&-(17)10g(1§ :O((r—kx/;(vL—kl))logé). (39)

Then for an output u* it holds that

|

Proof: The proof follows from the convergence estimates for the Algorithm [I|from [1]] and the fact

_ Uk

el i (o

2 2
Y’f—U’fH .
F+H YllF

that Problem (3)) is %-strongly-convex-strongly-concave, as well as (% + L) -smooth.
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Remark. As mentioned earlier, the problem is divided into M local problems, which are solved
on each of the machines separately.

Note that Algorithm |I|involves the absolute precision 4, 4 is the relative precision - a more convenient
value for practice.

Theorem 9 (for Theorem[3) Assume that the problem is solved by Randomized Extra Step
Method with variance reduction method from [l|] with precision J:

. NG € }

4 = min ; (40)
{ IMmax (W)™ (24X max (W) + L) VM (Q + G)

and the number of iterations T (see (30)). Additionally, stepsize -y is

1
= 41
7 M e (W) “h
It holds that gap(X K, YK ) < € after
Manax (W) (|| X0 = X |2 + [[v° - Y|
K=0 ( ( )(H . HF H HF) iterations, 42)

where
a XY) = max X Y/ — min X/ Y).
gp( ) ) Y’eyf( ) ) X/éXf( ) )

and Xtﬁ;g - K Zk 0 Uk Yaigg =% E?:o Uy

Proof: Summing over all k from 0 to K
K

23" (w (Vs ks uk) + W) Uk - x7)]
=0

+ u[(=Vy FUE U + AT (UF - v)])

Yy

112
< X0 = X+ [ =l
K
+ 41+ 7L+ P aax (W))VM(Q+G) Y (||U§—U§||F+|\05_U5HF)
k=0

~oiL+ o)

K
(2—’_472)‘2 max Z <‘

=0

kel

2y2) K ko vk 2 - 9
( — 4y A max Z HX Uw F+HY Uy )
k=0
With our choice of
K
W > (“ {(fo(UZ:; Uk + awUk) " (U - X*)]
max 0

+ | (~Vy SOk UH awog) (g - v)])

Yy

<[|x°-x

K
w1 (2 5 )V M@+ &) 3 (I = 2l + 105 - Uyl )

+3Z( +HUk U’“H2>

bl =y

Uk:

F
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Then, by XX = LS/ U and YK, = £ >, UF, Jensen’s inequality and convexity-
concavity of F:

gaP<Xﬁg’va‘g><¥}2§F< <2Uk> )mF< F(2%))

<max— F(U. /—mln— FX’Uk
max - Z in, — Z

Given the fact of linear independence of X’ and Y':

K

1 Z (F(X®,Y") - F(X',Y")).

XK yK
gap( ) < (X/Y,)K

avg’ ~ avg

Using convexity and concavity of the function F:

X, VE) < i, e (YY) = FOX, )
— k k k k , k
(X’Y/)KZ F(US,Uy)+ F(U;,Uy) — F(X',Uy))
K
: @%*2( (v P @ -up)]
e [(Varwh )" - x]).
Then
)‘)‘max(W)( XO—X 2 + YO_
eap(XK,. V) < | KIIF [ 2
K ol A~
+8(/\)\max(W)+L Q+G Z(||U£_U£||F+||U§—U§HF)
k=0
K e e
+3Mm“<w)kz_o(‘ ~U F+HUy - U, F).

§ from and K from are completed the proof.
]

Remark. (#2)) also corresponds to communication rounds. It is also easy to estimate the total number
of local computation on each node:

0 _ 2 0o_ vl? 2
KxT=0 (AA‘“&X(W)(HX ‘f”F Y= i) (r++vr (7L +1))log %)
o M amax (W) VL 02
‘O< : (”AAmaAW))lg 5)
(PN (W) + L) Q2 Q2
=0 ( 5 log 6) .

If /T A\ max (W) = O(L), the total expected number of local gradients becomes optimal.

C.2.3 Proof of Theorem[d]

Strongly-convex-strongly-concave case

39



Lemma 8 For Algorithm[2]it holds:
w2 12
[ = X YR =< (=) [ = X+ (U= Y

wI? 4
+(2+ i ++472L2)‘
oo
R 2
—(1=3yu—49°L?) HXk - Uy
F

4yL? 4 272 K okl
— +4~“L HU - U.
+( ot 50y

2

k

- U
T T g

2
2712 k rk
(1= 3y — 4L )HY —UyHF

Proof: Let us use additional notation Ff = UF + v - (Vx f(X*,Y*) = Vx f(UF,U})) and
F; = U?f — 7 (Vy f(XF,YF) - Vyf(Uk U?)) for short. Then by non-expansiveness of the

. Lo zr 7y
Euclidean projection, we get

||Xk+1 _ i_,_ Hyk+1 _

= [[proj [FE] — projy [X*)|5 + [|proiy [F}] — projy [V*]|

< ||FE - x5+ FE -

= || X" = x|+ 2w [ (R - X)| + |[FE - xH|
+\\Yk—Y*i+2tr[<Fk >< >}+\le I3

= | X* = x|+ 2w [(BE - x5 (0F - x7)]

+21tr [(Ffka) ( Uk)] Jr||F]C ||F
+21tr [(F; —Y*) (U;“ —Y*)}
+2u[(Ff = Y®) (Y- O8) | + | FE - YR

— X% = x*|[L 2t [(ngc —xh’ (Uic *X*)]

LAl

+ || FE-UF i— Xt -0y i
+[YE -y 2w [(FE - Y (08 - v))]
T ) e e
= | X = x|+ 2w [(UF - (VxS (X5 (YR = Vx fUE,UR)) - X*,0F -
+ ||FF - TF i— Xk Uk 2F
+YE Y 2 [(UF =y (T XY = Oy fUEUE) - V) (
+ ||FF - UF i— Y’“—Ul’ji
= ||x* - x* i+2tr[(U§+7~fo(X’“;Y’“)—X’“)T(Ug’f—X*)}

_HXk_Uk 2

+ 21 | (< Vx fUEUD) " (0F - X)) F

FYE =Y 2w [(UF 4y Oy p YR = YR (O - v

)y

Y2 [(—v Yy fURUR)T (05 . Y)} n HF; _ U;“Hi _ Hyk . U;“Hi

40

Tk
Uy

)
)



With expressions for V,* and V" in Algorithm we have

et e
< It =X 2w [z - va)” (00 - x7)
+21r _(—'y'VXf(U.féU@]f))T (U"f *X*)} +||Fe - Uz i HXk
Y=y 2 (O - v (0 - x7)]
_ T N % > 2
+21tr _(—’y~VYf(Uf§Ung)) (U';C_Y )] +‘F5_U;; F HYk

= |lxk - X% 2w [(Uj; - Vf)T (0% - X)}

rou| (k- 0t)' (Uf—X*)}

Lot :(Jy SV f(UF U (Ujj - X*)]

Yy
+|EE -] - ||x* - ok )
+|‘Y’“—Y*|i+2tr[(ﬁ5—%’“>T (U?f—y*)}

Lo [(U;ﬁ;)T (U;y*)}

+21tr [(—’y - Vy F(UY; sz))T (Uj B Y*H

2

~ 2 ~
F’“—U’“H —HY’“—U"’ .
+Hy Yilp YilF

2

F

F

According to the optimal condition for Uf and U;: forallz € X,y € Yand X = [z,... ,x]T,

Y=[y,....y"

tr [(’y AWUE 4+ OF - V;?)T (Uf - X)} +tr [(—7 AWOF 4 Uk - Vj)T (Uk v

Y
we get
3044 = X [ =y

< ||xt = x| %+ 2t {(—7 : AWUf)T (0% - X)}

+2u [(Ug - U;;)T (0% - x*)] + 21 |~y Vi SOk UD) " (0F - X))

2 2

+ ||[FF—UF

‘Xk_Uk

|
F
42t [(—v . AWUj)T (05 - Y)}

F

vy

+2u [(Uj ~op)" (o - Y)] +2u (= Oy pUEUD)" (O - v

~ 2 . 2
FkiUkH 7HYk7Uk
+H v YllF Yl

41
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= || x* - XH?F +21tr {(—7 : AWU};)T (Uf - X)}
Py [(U;; NONGE X*)] Py [(_7 AU (0F - X*)}
+21r [(—7- (fo(Uf;Uf) - fo(Uff;Uf)))T (Uf —X*)}

N 12
e i e

F

Y-y 42w [(_7 . AWU;)T (U; - Y)}
+21r [(Uj - Uj)T (0% - Y)} +2ur [(7 Yy f(U Uj))T (0% - Y)]
e [(_7 (V£ W) — Oy pO00)) (0% - y*)}

T N2
ri el -]
+H 4 Yilr Yllr
With property of the solution X*, Y*: forall X € X, Y € Y

tr [(VXf(X*; V) AW xS (X* X)]

tou [(—(vyf(x*;y*) _awys T (v - Y)} <.

And then p-strong convexity - strong concavity of f and 0-strong convexity - strong concavity of ¢,
we obtain

G A R
) )
S P e
™ (fy- (Vx f(UFUF) + \AWUE - Vx f(X*Y7) - )\WX*))T (U;“ - X)]
c A A T,
~ 2| (1 (Vs WS U - V0 0) " (0 - x°)]

e e B
g Tl r

E

+ || F,

tou '(U;f_ﬁg)T (Ug_x*)}

8

L s A .
2w (7 (=Vy f(OFTF) £ AWTF 4+ Wy f(X*5Y) — )\WY*)) (U;; - Y)]

p —<7' (va(Uf%Uf) - VYf(Uf;UZj)))T (U;’c _Y*)]
e -l -l

Lon [(Uf—ﬁz’j)T (U;j—y*)}
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2

< ||X* = x*|[5 4 Y-y Uk - x* Uk —y*

2
_9 ‘
P2

~ 2t [(7 (VxS WEUE) — xR 00) - Uk - 08 (0F - X*)}

2
F—2w’ .

2

i
F

+|

—2u [(7~ (Vo FUEUE) — v f05:08)) - wh - 09 (0% - Y*)}

2 .
R e L
+H Y Yl Vg

By Young’s inequality, we have

x4 =X e -y

k * 12 k %2 rk * 2 rk * 2
< [lx% = X+ Y = v = 2ym|OF - x| = 2n|Of -y
2 DA 12
= | @ sk - v sk 05) - @k - 02|
~ 112 ~ 112
+wy|U§—X*2+‘F§—U§ —HX"—Uf
2 F F F
2 N 112
= @vrwi o - ey rk o) - ws - o)
TE |k «|? Kk k_ k|
T Uy =Y F+HFy_UyHF_HY _Uy‘F
k |2 k 12 SV |k B3V |k «|)?
< flxt x|+ Iy -yl - SR o - x| - SE o -y
4 oA 2 4 L2
= | Ox W UE) - Ox pOE 0|+ = k- 0%
i Foap r
~ ~ N 2 N 2
o+ ||uk + AV sk US) = Vs ks O - OF |~ | xE - 0%
o sk - oy @k o)+ = ok - o
i Yy AR Eed (P | g vl g
112 .12
||k + 1T p (XY = O sk U - O [yt - o]
3V | 7 2 3| 2
< Ik _ x*||2 E_yl|2 _ OVH ||k s _7“ k *H
< X5 =X+ Y =Yl = = U = X7 - U - Y,
4 PN 4 )
b (Vs - V@ O+ (24 ) ok -
h F h

~ 2
2|y (VxS (X5 Y5) = O fOS U] — | x* - 0%

+ % Hv (Vx f(UEUE) — vxf(if;v;U;))Hi n (2 N ;:) HU5 g 2

’

~ 2
a2l (T YY) — B s U~ - 0
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Then we use L-smoothness of f

o112 12
[l = X[+ Y =y

“1? A2 35 P30 ||p Nk
<|IXF - X+ Y-y - SR ok - x| - S o -y
2
# 2 ok - ot 4 (2 ) o - o
2 F Y F
ror? | X* - ok ||xk - o]
L2 Nk ) 4 k_ prkl?
P gt o (o ) -
+ 2212 |y R — Ug|h — |[v* - O] 2F
_p |2 S’YM 3 *2 37” 3 *2
< [t = X[+ YF =y - S ok - x F—THUj—Y i

“ 2
~(1- 49217 HX’“ _ Ok

wI? 4 2
+ (2+7++472L2) vk -0t
T F "

W
By inequality [|A + B||% > 2 ||A||% — 2||B||, we have
x4 =X -y
< A=) X+ = X" [p + (1= 90) V* =¥

WI2 4 el
+<2+ i ++472L2)‘Uf—U§
T

4’7L2 4 272 k k| 272 k k|
2 — +4~“L HU —-U H — (1 —4~°L HY —-U H .
+( + +7M Y Yy vilp ( v L7) v p

F

. 2
— (1 =3y —49°L?) HX'“ - U!EHF

4yL?

4 o2
+(2+ 4 — 449212 ‘U’f—U’fH
Th o YllE

2

272 k _ [k
—(1—3'y,u—4’yL)HY -U, ‘F.
O

Lemma 9 Assume that for problems [@) we use fast gradient method with starting points X*,Y*
and number of iterations:

1
T=0 log HE 43)
Then for an output u* it holds that
2 N2 - 2 12
(Uf—Uf —i—HU’“—U’“H <4 HX’“—Uf —&—HY"—U’“ .
F Y Yilr F Yilr

Proof: We compute prox for 7—2)‘ VW X3 — % |VWY|2. on the third step of Algorithm E This
saddle point problem is equivalent to the minimization problems (). It is solved by fast gradient
method. The complexity of solving any of these two problems is O(1) on the Ker W and is

@, (1 + m} on the (Ker W)J‘. It follows from the convergence estimates for the

fast gradient method and the fact that Problems () are %-strongly-convex—strongly—concave, as

well as %-smooth on the Ker W and A\, (W) + %—strongly-convex-strongly-concave, as well as

min

Mmax (W) + %—smooth on the (Ker W)™*.
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Note that Algorithminvolves the absolute precision 9, 4 is the relative precision - a more convenient
value for practice.

Theorem 10 (Theorem[d) Assume that problem () be solved by fast gradient method with precision
d:

5o ! (44)

2(2+ 9L 4+ L 1 4y212)

and the number of iterations T (see ). Additionally, stepsize 7y is

11
—min{ -——;—— b 4
7 mln{12ﬂ7 16L} (“43)

Then Algorithm E converges linearly to the solution z* and it holds that HX’““‘1 - X~ 2F +
||ch+1 —Y*Hi, < € after
XO X* 2 + YO—Y* 2
K=0 ” ‘ | £ ” ” £ iterations. (46)
v ° €
Proof: Combining results from Lemma|8|and [9] gives
2 w2
X=X Y =Y < (= ) [IXF = X[ (L) [V
4~ L2 4 ~ N2
+(2+ i ++472L2)5HX’€—U§
TR F
2
—(1=3yu—49°L?) HX’“ - Uy
F
4y L? 4 ~ R
+(2+ i ++472L2)5HY’“U5
[T F
12
— (1 — 3yp — 49212 HY’“—U’“ .
(1 =3y —4y7L7) Hs
With the choice 4 from (@#4)), we obtain
k |2 k k 2 k « 2
X5 = X Y =Yl < =) [|X° = X+ (=) [V =Y
2
N — 4 2L2 HXk—Ak
(2 3y — 4y ) Uy h
1 12
_(Z_ 422 Hyki kH
(2 3vp— 4y > U, -
The proof is completed by choosing ~ from (@3).
O

Remark. also corresponds to calls of f gradients which in turn corresponds to the number of
local computation on each node. Substitution of [@3)) in gives that

o o 1K= XL v - v
T £ '
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It is also easy to estimate the total number of communication rounds:

0 _ * 2 0 __ * 2
) logilog HX X HF+ HY Y HF)
Y €
i )‘/\mmx(W) HXO X* i‘—i_ HYO_Y* 2
7M<1+\/1+/\/\3—1m( W)+ 1 )logglo .

XO X*2 YO—Y*2
B PO D Y5 N IO B o e e
max {/\)\LH(W), %} g €

S
—

P 112
og HXO_X ||F+HYO_Y |F>
€

XO X* 2 YO —_Y* 2
= <1+\/min{x(W),Mmax(W)}> log 1 H et F)
Y L 6 3

XO X* 2 YO —_Y* 2
1\/m1n{x(W), A)\max(W)}IOgSIOg || ||F+ H HF)

L €

~y
XO X* 2 YO —_Y* 2
“o(1+4) %mn {07 1 X=X HF>

g

§
;
=0<1 (14 v/min X (W), 7\ e (W)} ) log
(
(
(
(

X0 - x*|]2 4 [[vo — v |?
L\/mm {X(W), )\)\max(W) } 10g H F + H F>
7 L (5 €

L ML | 11X = X5+ [y — v |3
=0 <min { x(W), ()} log = log H £ H £,
7 7 5 €

The third inequality follows from the inequality: v < %

Convex-Concave case

Lemma 10 For Algorithm[2)it holds:
2y 1r [ (VS (UE UF) + aWUE) T (UF - X7)]

+ 29 1r [ (- f(UE U + AW T (U,k -]

z1 Yy
P YE -y -

+4(1+ YA Amax(W) + 7 L)V <Q+G> (1 - U!:HF +110F - UE|1r)

)

2 2
clre-aln). “)

< [|x* -

Hyk-‘rl Y*

HXk‘-‘rl X*

2
Tk Tk
~Uf| ~ Uk

+ (2444217 (

~ (1 - 49212 <HX’“ — Uk

Proof: Let us use additional notation F¥ = UF + v - (Vx f(X*;Y*) — Vx f(U¥;UF)) and

)Yy
F; = U{f — - (Vy f(X*,Y*) = Vy f(UE; UF)) for short. Then by non-expansiveness of the

z1 Yy
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Euclidean projection, we get

2

||Xk+1 _ X 2F+ Hyk+1 _yr .

7+ [proiy [F5] = projy [Y ][

= |[projx [F] = proj [X]
w2 i’

< HFHI:C*X HFJFHF;*Y HF

= || X" = x|+ 2 [(FE - X9)T (X - x|+ ][R - X

+]|y* -y

2t [ (B Y5 (=) | B =Y

= | X* = x|+ 2w | (FE - X9 (0F - x7)] 42w [(BE - XM (x* - 0F)]

+ |[Ef - x|,
+[YE -y 2w [(FE-YH) T (0F - v7)| 2w [(FE - Y (YE-0F)]
2
+ HFyk _YkHF
= | X* = x|+ 2 [(FE - X9 (0F - x7)] + || £k - O : |
F

|2 T (p * 2
[yt =y 2w [(FE =R (05 - v7)] +| .

k _ Frk
Fy _Uy

—[|x* - X%+ 2t [(Uj; +y - (Vx (X5 V) = Vo f(UE UF)) —
+ e = o] —HX’“—U;“ ’
F F

+[YE =Y 2w [(UF -y (T S5 YR) - Wy f(U UE))

2 2
k_ frk k _ frk
gl L] Pl L

.

_ Hyk _k

xh)" (0 - x7)]

(i)

= [k = X[ 2w [ 4y V(X YR - X9 (08 - X))

Fk—Uk

+21tr {(—7~fo(U§§U§))T (Uf—X*)} +‘ 1 ’

Y

2

F

H[YE =Y 2w [(UF 4y Oy p YR = YR (O - v

+2tr [(”y : Vyf(Uk'Uk))T (sz - Y*)} + HF; -0y i

x? Yy

With expressions for V¥ and Vyk in Algorithm we have

w112 w2
TR g
< X = 2 (U - V) (02 - x|

2 2

2t [(—7~fo(Uf;Uy'“))T (Uf —X*)} +||Fy Uy

2 U -vh" (08 - x7)]

)X’“ _ Ok

F ‘ F

+2tr {(7~Vyf(Uf;Uf))T (05 - Y*)] + HF; - Uzlf

2 “ 2
_|ly* —UkH
F H YllF
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= [|x* - X*HQF +2tr [(Ug’j — Vwk)T (Um’“ - X*)]
ot [(Uk - Uk)T (Uk - )] o [(—v Y fUEUR)T (Uj: - X)}

et - 0] - -0

e T [(Ug ~v)" (0 - y*)}
L 2u [(U; o) (0% - y*)] +2u (v Vv fk Ui (0F - v*)]

~ o |12 N2
Rl e i
+Hy YllF Yllp

Y=1ly....9"
tr [(7 AWTE + U — Vf)T (0% - X)} +ur [(—7 AW+ UF - Vf)T (0% - Y)} <0,
we get
X4 X [y =y
< ||X* - X*|| % 42w [(_7 . AWUf)T (0% - X)}
ey [(Ug; ~o8)" (0 X*)] pu (- Vs hiup)” (08 - )]

N 112
G I it
F F

O [(7 : AWU{;)T (0 - Y)]
+2t [(U;; - U;;)T (0% _y*)] +2u (v Vy Uk UD) " (08 -v)]
i R I E

Small rearrangement gives

2yt [(VacfUEsUS) + W) (U - x7)]

+ 2yt [(=Vy JU5 U + W ul) " (Uf - )]
< X = X+ YR =y = = x| = [ -y

Fovu {(AWU’“ - /\Wﬁ’“))T (Uj; - X)] Yoyt [ (AWUF) (Uk Uk)]
+ 2yt | (AWOE - awuy) (Uj - Y)} +2yuw [wop)" (vk - 0%)]

Uk U) ( — X )] +2tr[(—7-vxf(U§;U§)) (Uf—U;;)}

(
+2tr[(
raw| (o -0)" (0 -7)] 2w [ v (05 - )]

12 112
_ Ay~
P R

[ o], - - e ,
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D o P e R P o e LR g
+ 2AWUE = AWOE e - |0% = X* |17 + 29 IAWUE | U5 = O
+ R|AWTE = AWUE | - [TF = Yl + 2 AW UL e - | — OF e
2k — OF e - 105 = X7l + 2|9 S UE U - 10— UE |

+2|Uy = Uylle- 10y = Y*|r + 29| Vy f(US Uyl - 10y = Uyl
2 2
k rk k rk k rk
Ff -0t Fr-Ug| | -0

2 R 2
—HX’“—U,’f +’
F F

|

.
With definition of F* and Ff we get
2y [(Vx SO UF) + 2T (U - X))

+ 2yt | (= Vy JUEUE) + WU (UF - v)]
SR O S T Ll PR Pt o [ canes
+ 2| AWUE = AWOE|lg - |TUF = X7 ||+ 2y AW UE |1 - |UF = UF |
+ 2y |AW TS = AWUS|p - |05 = Y™ e+ 29| AW US| - U = U
+2|UE = UF|lp - |UF = X*|lp + 29|V x FUE US| - 105 — Ul

+2UE = Ul [0 = Y* |l + 2|y FUE US| - [T = UF
o 2 R 2
Uk = 0f = (Va (X575 = Ox sl o) - |xs - ok

+|

F
T A R\ 2010 (e I o7a3170)] i S

< XE = X YR =y = X = X = YR -y

+ 2y AWUE = AWUE | p - U5 = X* || + 29[ AWUE || - Uy = ULl

+ 29| AWUE = A\WUE||p - |Uf = Y*||p + 29| AWUE|| 5 - |UF = US| 5

+2|UF —UF|p - |UF — X ||p + 29| Vx fUE U |7 - |UE — UF||

+2|UF — Ul |p - |UF =Y |p + 29| Vy FUE U p - 1UF = US| p

+2 ‘ Uk — Ok 2F + 297 |V x F(XF YR) = Vi fUB UR| — ka Ok i
val|us ot + 22219y KR Y -y kU - [y - o]
2y tr [(fo(Uf; k) + AWUF) " (UE - X*)}
2y [(~Vy S U5 U + W) (Uf - )]
S o PR Lt o PR P ats o R e

+ 29V/MQ (||AWU§; AWUE | p + | AWTE - AWU;HF)

+2(1 + M anax (W) 1DV (Q + G) (|UF = Ol + [0 = US| )
vol|uk —0H|] + 222 | Vs (x4 v~ Vs U - x4 - o]
+2 vk - 0F i +29? |V F(X5YR) = Oy fOE UR) | - [YF - OF i

Here we additionally used the diameter 2 of Z and assume point &, , s.t. ||| < G, ||§]|| < G for
some constant G.
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Then we use smoothness of f, ¢ and obtain
2w [(Vx FU U + 2T (U - X))
+ 29t [(—Vy f(USUL) + /\WU’“)T (Uf -v")]
e B R A B L A
400 Mh ) DN+ ) (Il = Okl + 10§ = Ul )

)
)

Theorem 11 (Theorem[d) Assume that problem ({@) be solved by fast gradient method with precision

o:
= min f €
' { 9L (24MAmax (W) + L) VM (2 + G) } (48)

2
—Uf
F

rk
_Uy

+ (2 +49°L3%) (

2
2712 k rk k rk
—(1—47L)<HX _ Uk F+HY - Ut

]

and number of iterations T':

Munax(W) + 1 02
T=0 1+, | —————TL | log— | . 49
Additionally, let us choose stepsize v as follows
1
= —. 50
T=351 (50)
It holds that gap(X K, YK ) < e after
L(|x° - x||% + [y° - v|?
K=0 ( (H HFE H HF) iterations, (1))

where

gap(X,Y) = {/r}:g)l(;f(X7 Y') - )Erllér}y F(XY).

K
and Xcﬁ/g - K Zk 0 Uk Ya['gg 74 Zk:o Uy

Proof: Summing over all k& from 0 to K
K
203 (w [(Vas @5 U + aWUE)" (U = X) |+ w[(=Vy fUE TR + awTg) T (Uf - ) ])
*[|2 %112
< [|X° =X + Y =Yl

K
A0+ YD (W) + 9 LVM(Q + G) Y (1UE = OE e + 105 = Uf )
k=0

K 2 2
2712 rk k rk
+(2+47L)k§_0( i, F—i—HUy—Uy F)
K 2
2 2 k k k rk
—(1-412) (HX _ O +HY — Ut F).

el
Il

(
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With our choice of v
K
%Z (tf [(fo(Uﬁ; UF) + AWUF) " (U - X)}
k=0
b [y p U U + 2w (U - v)])
< X0 = X[+ YO -}

)\)\maz((W) >

K
+4<2+ M(Q+G) Z(IIUf—UfHFJrHUf—Uf”F)

+3ké<

2 2
ok k ik
~U F+ HUy _UyHF

Then, by Xavg = 3% Zk _o UF and Ya{fg = % Zf:o U;“, Jensen’s inequality and convexity-
concavity of F’:

k / o k
gap(Xavgvym)g) < }I,I}EE)%(JF < <ZU ) > )I(I}éI}YF ( (ZU ))

k=0

< — > FULY') - — Y F(X' U}
max - Z mln Z ).

Given the fact of linear independence of X’ and Y':
K

1 K / / k
gap(Xavq,Yavg) < ()I(r}a}%)gg (F(X YN -F(X'Y )) .

Using convexity and concavity of the function F:

K E k
gap(Xavanavq < ()r([}ayx,) E (X/ U ))
1 K
_ E k ! k k k k / k

1 RN A .
S&?%K,;O(tr[(WF(UivUﬁ) v - u)]

+ u[(VxFUEUN)" (UF - X)]).

Then
L(| X0 = X*|5 + [Y° = v*|3)
gap(Xg)‘zp Yaigg) FK =
K A A
8 (L + Mumax(W)) VM (Q + G) Z(IU!E—U!EIIFHIUf—UfIIF)
k=0

112
—Uf
F

Tk
_Uy

)

+3L§:_0<’

the choice of § from and K from completes the proof.
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Remark. (51) also corresponds to the total number of local iterations. It is also easy to estimate the
total number of communication rounds:

o frx - X+ [y - Y3 Mumax(W) + 1) 02
KxT=0 . 14 —)\)\LH(W)-F% logT
0_ y|?2 0_ v|2 Munax (W) + 1 2
o [HIR =X v - v [P 2 o2
€ M (W) +L 770
L X0 = X[ + Y0 =¥ ) Muax(W) Q2
SO( . 1+/\)\;m(W)+%logT
L(||X° - X||% +|[y° - Y|’ 2
o[BI X =Y [ My 02
€ max{)\)\fmn(W), %} Y
L(IX° = X%+ | y° -v|> 2
-0 ( (= X + 2 -7 Jmin{x<w>,mmax<w>}log‘§)
(min (LX) VI e} (X0 = X[+ Y=Y @2
=0 log —
€ )
<min {L\/X(W)7 \/L)\)\max(W)} 0
=0 log —
€ é
C.2.4 Proof of Theorem 5]
Letus use additional notationC‘vY +(X,Y) = (1 p)r Vx fe (X,Y)+ AW X and Gy (X,Y) =
(1 o Vy fe, (X)Y) — =" AWY for short, Where]P’{fk :j} = %

Let us consider our problem as a finite sum problem with r + 1 terms.

1 T
F(X,Y) == 0;(X.Y) +gra(X,Y),

j=1

where g (z,y) = memm,ym) and g,41(X,Y) = 3|VIVX|2 - 3|[VIVY]3. For such a
=1

problem, one can use the results of the convergence of the variance reduction method [[L] on which
our method is based. Convex-concave case In the convex-concave case (Section 2.3.1 from [[1])), the
estimates on the number of iterations is

2
0 (Lefo ) ’
V/pE
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where Lg can be computed as follows:

E| 1162 (X1, Y1) = Gal(X2, Vo) [ + Gy (X1, Y1) = Gy (X2, Vo)

=(1-pkE

1 2

i (700 = Vg (a2
k

1

2
T [V e 070~ Ve e

1 1
+p {2 AW X, — AW X5 |2 + 2 IAWY; — AWYQIIfm]
[sz' 2 IV x fi(X1,Y1) — Vx fi( X2, Ya) | 7

+ZP1' o IVy £i(X1,Y1) = Vy fi( X2, Y2) | 7

+s [HAWX1 CAWXlE 4 [AWY; - AWY|]
1 L ) )
<1 Y (10 - el 1Y - Vel
i=1 v

2 2
N W) (130 = Xall} + IV~ Yal 2]

Choose p; = =

E[1Ga(X1,Y1) = Ga(Xe, Y2) 3 + Gy (X1, V1) = Gy (X2, V2) ]

L >\2/\3nax(W) 2 2 2 2
< (15 + Pl (160 - Xl 4 13 - Yol = 22 [0 - Xl + ¥ - Yall]

Note that optimal complexities in Algorithm [3 for local computations and communications are
achieved on different sets of p and p. Let us get them separately

e The local stochastic gradient complexity of a single iteration of Algorithm E is 0 if &8 = 0,
ot =1, 1ifeh = 1,682 =1, r 4+ 1if €k =1, ¢F 2 = 0and rif €¥ = 0, €52 = 0. Thus, the
total expected local stochastic gradient complexity is bounded by

2 2
0 (=21 =)+ ¢+ 11 =i+ 700) ) =0 (1 prtry )

VPE N3
For p = % = % the total expected local stochastic gradient complexity of A]gorithm
becomes
Leg$)? L2 LO?
Ol-p+rp) =L ) <0 2‘/;7“ -0 VLY ’
N3 € €

where L = L + Myax (W).

e The total communication complexity of Algorithm [3 is the sum of communication complexity
coming from the full gradient computation (if statement that includes & k+2) and the rest (if statement

that includes ¢¥). The former requires a communication if ¥z = 0, the latter if £* is equal to 0.
The expected total communication O (p + p) per iteration. Thus, the total communication complexity

is bounded by
L )
@) + ,
((p p) N
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2
Forp=p,p= LZ’\JF;%% the total communication complexity of Algorithmeecomes

L2 L2 Muax (W) VIZ+ 22, (W)Q2
O((p—i— P) \fs) O(\/ﬁ € ) O<\/L2+)\2)\I2nax (W) € )
0 (MmaxiW)W) .

Strongly-convex-strongly-concave case

In the strongly-convex-strongly-concave case (Section 4.3 from [1]]) the estimates on the number of

iterations is
1 L 1
o((5+ ) ee2)-
VPR €

e The total expected local stochastic gradient complexity is bounded by

1 L 1
O((l—p+rp ( ° ) log — ) ,
(¢ ) (5 + ) s
1 Mmax (W)

Forp=:1,p= T s (V) the total expected local stochastic gradient complexity of Algorithm

becomes

(’)((l—p+rp) (1 jii)logi) g(’)(2 <r+“ifeff) 1ogi> :O<(r+\/gi) 1ogi>,

where L = \/L + Mupax(W).

e Thus, the total communication complexity is bounded by

1 Le 1
(oo () el)
AZAZ (W)

Forp=p,p= 75 T /\;‘;; NG the total communication complexity of Algorlthmubecomes

o (1o (5 + 3 os ) =0 (1 Y5 o)
( Muax(W) VL2 + X2AZ,_ (W) log 1 )
e

VIZ+ N2, (W) p
=0 (A)\max(W) log 1) .
1 €
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