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Abstract

Majority of existing collaborative learning algorithms propose to exchange local
model parameters between collaborating clients through a central server. Unfor-
tunately, this approach has many known security and privacy issues, primarily
because of the high dimensionality of the updates involved; furthermore, it is
limited to clients with homogeneous model architectures. The high dimensionality
of the updates makes these approaches more susceptible to poisoning attacks and
exposes the local models to private information inference attacks. Based on this
intuition, we propose Cronus that uses knowledge transfer via model outputs to
exchange information between clients. We show that this significantly reduces the
dimensions of the clients’ updates, and therefore, improves the robustness of our
Cronus algorithm. Our extensive evaluations demonstrates that Cronus outperforms
state-of-the-art robust federated learning algorithms. We also show that treating
local models as black-box significantly reduces the information leakage measured
using the membership inference attacks. Finally, Cronus also allows collaboration
between clients with heterogeneous model architectures.

1 Introduction
Collaborative machine learning (ML) [1, 2] is a promising approach for building machine learning
models using distributed training data held by multiple parties, called clients. The collaborating
clients repeatedly exchange their local models through a central server in order to train a shared
global model, without sharing their private data with server or any other clients. This is very attractive
to parties who own sensitive data and agree on performing a common machine learning task, but are
unwilling to pool their data together for centralized training. Hence, many real-world applications
have adopted collaborative learning approach, e.g., Google’s Gboard [2] and Apple’s Siri [3].

A popular collaborative learning approach called federated learning (FL) assumes homogeneous
local models, i.e., with the same architecture [2]. In each FL round: (1) the server broadcasts the
global model to all clients; (2) each client trains the global model locally for few epochs and shares
a model update with the server; (3) server aggregates the model updates using an aggregation rule
(AGR) and updates the global model using the aggregate. Three of the major obstacles hindering the
scalable deployment of secure and truly privacy-preserving federated learning are: (1) susceptibility
to poisoning attacks [4, 5, 6], (2) susceptibility to private information inference attacks [7], and (3)
lack of support to clients holding heterogeneous model architectures.

In this paper, our main focus is on securing collaborative learning from poisoning attacks. There
exists a long chain of recent poisoning attacks and defenses for federated learning [8, 9, 10, 11, 12].
However, most of the defenses built upon robust AGRs [10, 8, 9, 13, 4] are susceptible to some form
of poisoning attack [14]. The core reason for this susceptibility is the high-dimensionality of the
clients’ model updates: the theoretical error bounds of these robust AGRs [10, 8] depend on the
dimensionality of their inputs, i.e., of model updates in FL. The models in modern FL generally have
very high dimensionality which makes the error bounds of robust AGRs prohibitively high. The robust
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AGRs that achieve the dimension-independent error bounds [15, 16, 17] have O(d3) computational
complexities, where d is the number of parameters. Hence, the large number of parameters in modern
FL prohibits the use of these robust AGRs in practice.

Furthermore, sharing of model parameters exposes the benign clients to the risk of inference attacks
from the (potentially malicious) server and clients; the problem is especially worse with high
dimensional model updates [7]. Thus, sharing model parameters to transfer the knowledge of local
models is not a secure design choice in collaborative learning, especially considering that this is not
the only way of exchanging knowledge between models.

Our contributions. In this paper, we design Cronus, a robust collaborative learning method to
circumvent the security issues of FL. Cronus extracts, aggregates, and transfers the knowledge of
the clients’ local models in a black-box fashion using the knowledge transfer paradigm [18, 19].
Knowledge transfer is commonly used for compression and regularization purposes in ML. Cronus
supports heterogeneous model architectures, because the clients share knowledge of their local models
via knowledge transfer, and therefore, they are only required to agree on the same ML task. Following
the previous works that use knowledge transfer in collaborative ML [20, 21], we assume that an
unlabeled public dataset is available for the knowledge transfer.

Cronus algorithm. Specifically, Cronus operates in two phases: (1) In the initialization phase,
clients train their models on their local data until convergence. (2) In each round of the collaboration
phase: (a) clients compute predictions on the unlabeled public data and share the predictions with the
server; note that, unlabeled public data is abundant, but labeled public data is not available due to the
expensive manual labelling process involved, (b) the server aggregates the predictions of clients for
each sample of public data and shares the aggregate predictions with all clients, (c) clients fine-tune
their local models using the unlabeled public data and aggregate labels, while also training with their
own private training data. We run the collaboration phase until convergence.

Intuition behind security and privacy due to Cronus. By sharing the predictions on the public
data, Cronus reduces the number of dimensions of the clients’ updates to the size of the outputs of
client models, which is orders of magnitude smaller than the number of client model parameters.
Cronus aggregates the clients’ predictions on each sample from public data using state-of-the-art
robust AGR [16]. The computational complexity of this robust AGR is O(d3) (d is the number of
model parameters), and hence, it is computationally prohibitive to use with model parameter based
FL. Cronus, on the other hand, significantly reduces the dimensionality of updates, and therefore,
makes the use of the state-of-the-art robust AGR practical. In addition, knowledge transfer using data
that is disjoint to the target models’ training data is an effective regularization technique [22], and can
reduce information leakage about the training data [23]. To summarize, Cronus leverages knowledge
transfer to exchange the knowledge of clients’ local data and mitigates security and privacy issues in
FL algorithms based on parameter sharing.

Evaluations. We comprehensively evaluate the security and privacy of Cronus. We use state-of-the-
art attacks to compare security due to Cronus and existing robust FL algorithms; we also design new
attacks to break a class of AGRs based on multiplicative weights updates [24, 25]). We show that,
in parameter sharing based FL, one or more of poisoning attacks reduce the accuracy of the global
model to random guessing for all of the considered robust AGRs. However, under any attack, the
reduction in average of accuracies of client models in Cronus is negligible and is less than 2%;
for the strongest attack on Cronus (of all considered attacks), the reduction in average accuracy of
client models is 1.6% for Purchase, 1.3% for SVHN, 1.5% for MNIST, and 2.1% for CIFAR10.

We also empirically show that, the clients in Cronus enjoy significantly higher privacy compared
to existing FL algorithms; we measure the privacy as the risk of active and passive membership
inference attacks [26]. Finally, we empirically show that Cronus is highly effective even when the
clients have heterogeneous model architectures.

2 Background and Related Work
Threat Models. We consider a poisoning adversary who controls an ϵ fraction of the total n
clients, called malicious clients. The goal of the adversary is to mount an untargeted poisoning
attacks [6, 14, 4] that reduce the accuracy of the global model (or of local models in case of Cronus)
on most of the test inputs. For this, the adversary instructs the ϵn malicious clients to send malicious
updates during collaborative learning. For the worst-case security analyses, we assume that the
adversary has access to the benign clients’ updates. Therefore, the adversary can use this data to
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Table 1: Theoretical error rates of various AGRs. Error rate is the L2 distance between the outputs of robust
AGR in benign setting (all benign clients) and under attack (some clients malicious). n is the number of clients,
ϵ is the breaking point, d is the dimensionality of AGR’s input, and σ2 is the variance of each of the dimensions.

Aggregation rule (AGR)
Breaking

point
Statistical
error rate

Computational
cost

Mean [2] 1/n Unbounded O(nd)

Median [17] 1/2 O(σϵ
√
d) O(nd logn)

Krum [10] (n− 2)/2n O(σn
√
d) O(n2d)

Bulyan [8] (n− 3)/4n O(σ
√
d) O(n2d)

RobustFilter (Our work) [16] 1/2 O(σ
√
ϵ) O(d3 + n)

craft effective malicious updates. We also assume that the adversary has complete knowledge of the
server’s AGR.

We also evaluate the risk of membership inference attacks (MIAs) [23, 26] when the central server
is the adversary. The goal of the adversary, i.e., the server, is to distinguish between the members
and non-members of the private training data of collaborating clients using their updates in each
round. We consider both passive and active MIAs: in the passive MIA, the server mounts MIAs
using the updates without tampering with the training protocol. While in the active MIAs, to facilitate
MIA [26], the server modifies the aggregated updates before sharing it with all the clients.

Aggregation Rules (AGRs). The most basic and effective AGR, federated averaging (FedAvg) [2]
is based on weighted averaging of client updates. Here, the weight of the ith client is proportional to
the size of their local training data. FedAvg is widely used in non-adversarial settings, but it is not
robust against even a single malicious client [10]. To improve the resilience of federated learning to
poisoning attacks, multiple robust AGRs [10, 8, 9, 13, 4] are proposed in the literature as reviewed
in [14]. Robust AGRs aim to remove the malicious updates to reduce their poisoning impact on the
global model. We compare the upper bound of the error on the aggregate results for each aggregation
rule in Table 1. We defer reader to Appendix A for more details about AGRs.

Little is enough attack (LIE). Existing robust AGRs, e.g., Krum and Bulyan, assume that in order
to mount an effective attack, the malicious updates should lie far from the benign updates. However,
Baruch et al. [6] challenge this assumption and propose an attack called little is enough (LIE). LIE
crafts its malicious updates by adding small amounts of noises to each of the dimensions of a benign
update; a benign update can be an average of the updates from benign clients. LIE mounts successful
attacks on the state-of-the-art robust AGRs, including Bulyan, Krum, and Median AGRs. From
Table 1, we note that the error rates of all of these AGRs depend on the dimensionality of their inputs,
which is very large in FL due to the extremely large number of modern neural networks. Hence, we
argue that this curse of dimensionality makes existing AGRs more susceptible to untargeted poisoning.

High-Dimensional Robust Mean Estimation. The robust AGRs in FL try to recover the mean of
the benign updates from the set of benign and malicious updates. This is precisely the objective
of the robust mean estimation problem from robust statistics. Diakonikolas et al. [16] propose a
filter-based algorithm RobustFilter that achieves optimal error guarantee (O(σ

√
ϵ)) and optimal

sample complexity (Θ((d/ϵ) log d)). From Table 1, we note that RobustFilter has tighter error rate
guarantees than existing robust AGRs, i.e., it is more robust to untargeted poisoning. However, using
this RobustFilter in parameter sharing based FL is impractical due to its dimension-dependent sample
and computational complexities. We address this impracticality issue in our work.

Multiplicative Weight Update (MWU). In this work, we also evaluate the AGRs based on mul-
tiplicative weight update (MWU) technique [24, 27, 28, 29, 25]. These techniques assume that,
compared to the benign updates, malicious updates lie farther away from the average of all input
updates. Hence, for an update, they assign weight that is inversely proportional to the distance of the
update from the average of all updates. We evaluate two AGRs: MWU with averaging (MWUAvg)
[24] and MWU with optimization (MWUOpt) [25]. In Section 5, we empirically show that MWU
based robust AGRs are robust to existing poisoning attacks, but can be broken using our improved
poisoning attack that we will describe in Section 3.

3 Poisoning attack against MWU-based aggregations (OFOM).
MWU-based AGRs are robust against the existing poisoning attacks. However, we propose a simple,
yet highly effective attack against these AGRs. MWU-based AGRs treat the updates near the empirical
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weighted mean as the benign updates. However, the weighted mean is not robust and our attack
exploits this fact. Specifically, the adversary crafts two malicious updates: the first malicious update
is arbitrarily far from the mean of the benign updates. While the second malicious update is set to
the empirical mean of benign updates and the first malicious update. Therefore, our attacks force
MWU-based AGRs to assign very high weights to the second malicious update. Note that the second
malicious update is very far from the mean of the benign updates, and hence, effectively corrupts the
global model, as we will show in Section 5.

4 Cronus Collaborative Learning

In this section, we first explain the shortcomings of parameter sharing based FL algorithms and then
detail our Cronus learning algorithm. The major limitations of existing parameter sharing based FL
(Section 1) algorithms [2] are:

Robustness: As shown in Table 1, the upper bound on the error rates of existing robust AGRs depend
on their inputs’ dimensionality, i.e., on the large number of model parameters in FL. This makes
these AGRs significantly susceptible to untargeted poisoning attacks such as LIE [6].

Privacy: Clients directly sharing their local model parameters facilitates strong white-box inference
attacks by the (potentially malicious) central server [7, 26]. Furthermore, the larger the clients’
models, the more the private information leakage through their model parameters.

Heterogeneity: Parameter sharing based FL algorithms are restricted to homogeneous architectures,
i.e., all clients must have the same model architecture. This is not always possible, especially when
clients have different resource constraints, e.g., on-device memory and Internet connection stability.

To remedy the above shortcomings, the collaborating clients should share the knowledge that they
learn from their training data in a succinct way. This is the main objective of knowledge transfer
[18, 19, 30, 31]. In particular, knowledge distillation [18] is introduced as a means of compressing
large models, called teachers, into smaller models, called students, while retaining their accuracy. It
efficiently transfers the functionality if a model (or an ensemble of models) to a student model [18].
It makes learning very effective for the student model by placing equal weight on the relationships
learned by the teachers across all the classes and significantly improves the convergence of student
models (as compared to training directly on hard-labeled data) [18, 19, 31]. Furthermore, knowledge
transfer is an effective regularization method [22].

Motivated from the aforementioned benefits of knowledge transfer, in this paper, we leverage
knowledge transfer and propose Cronus, a collaborative learning algorithm, where the server extracts
the knowledge of clients’ local models via their outputs and aggregates them in a robust manner.

Overview of Cronus. To extract and exchange the knowledge of local models, Cronus uses a set of
unlabeled public data, Xp, which is essentially a set of feature vectors. Algorithm 1 describes the
two training phases of Cronus: In the first phase, called the initialization phase, a client i trains their
local model θi only on their local training data Di for T1 epochs without any collaboration.

In the second phase, called the collaboration phase, the clients share the knowledge of their local
models via their predictions on the public dataset, Xp. Specifically, epoch t of this phase includes
three steps: (S1) Client i computes prediction vectors Y t

i for the public data Xp using their local
model θti and shares Y t

i with the server. (S2) The server aggregates the predictions (separately for
each sample ∈ Xp), i.e., computes Ȳ t = fCronus(Y

t
i , .., Y

t
n), and then sends Ȳ t to all the clients; we

use the robust mean estimation algorithm RobustFilter [16] as the aggregation algorithm fCronus of
the server in Cronus. (S3) Client i updates their local model θti using their private data Di and the
labeled public data (Xp, Ȳ

t) to obtain θt+1
i for the next epoch.

Recall that the size of the updates determines the error rate of the existing robust AGRs. Hence, just
by reducing the dimensionality of the updates (from the size of the model to the size of the prediction
vector), Cronus already reduces the error rate guaranteed by any AGR, including that of Bulyan and
Median. However, when the size of the prediction vector is larger, these AGRs might still be highly
susceptible to untargeted poisoning. To address this issue, Cronus uses RobustFilter [16], which
achieves the dimension independent error rate guarantees. Furthermore, its sample and computational
complexities have the least dependence on the dimensionality of updates among existing robust mean
estimation algorithms. Nevertheless, we note that, Cronus is compatible with any robust AGR.
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Algorithm 1 Cronus algorithm. Initialization phase does not involve collaboration. Di and θi are local dataset
and model parameters from i-th party. Y t

i are predictions from i-th party on public dataset Xp in epoch t and
Y t
i [k] is the prediction on k-th public data in Dp.

1: Initialization phase
2: Each party i ∈ [n] updates parameters in parallel:
3: for t ∈ [T1] epochs do ▷ Training without collaboration
4: Update θi ← TRAIN (θi, Di)
5: end for
6: Y 0

i = PREDICT(θi;Xp) ▷ Compute initial predictions on Xp

7: Send Y 0
i to the server

8: Collaboration phase
9: Ȳ 0 = fCronus({Y 0

i∈[n]}) ▷ Initial aggregation at the server
10: for t ∈ [T2] epochs do
11: for i ∈ [n] clients do ▷ Each party updates parameter in parallel
12: Dp = {Xp, Ȳ

t}
13: θi ← TRAIN (θi, Di ∪Dp) ▷ Update local model parameter θi
14: Y t

i = PREDICT(θi;Xp)
15: Send Y t

i to the server
16: end for
17: Ȳ t+1 = fCronus({Y t

i∈[n]}) ▷ Aggregation at the server
18: end for

The sample complexity of RobustFilter is Θ(d log d), which is the number of clients required
to achieve the theoretical error bound. This dimension-dependent sample complexity makes
RobustFilter [16] impractical to use in parameter sharing based FL. In contrast, the low dimen-
sional updates in Cronus significantly reduce the number of clients required for RobustFilter to
achieve desired error rate. For instance, Cronus reduces sample complexity by an order of 105 when
training DenseNet on Cifar10 dataset. Therefore, unlike any existing FL, Cronus can enjoy the strong
theoretical error guarantees of RobustFilter, even with a small number of clients in the network.

Unlike the parameter sharing based FL algorithms, Cronus does not force a single global model onto
local models. Instead, each local model is updated separately by improving its classification accuracy
and resilience to inference attacks. This further improves the utility of local models. Note that, such
fine-tuning has significant fairness advantages [32, 33]. Furthermore, Cronus completely eliminates
the risk of white-box inference attacks, as no client releases their model’s parameters. Furthermore,
Cronus allows its clients to use any privacy preserving mechanism [34] during local training.

In conclusion, by combining knowledge transfer and state-of-the-art robust mean estimation
RobustFilter, Cronus provides a practical collaborative learning algorithm that is robust and private,
and also support clients with heterogeneous model architectures.

5 Experiments

Experimental Setup. We use four datasets, Purchase [23], CIFAR10 [35], SVHN [36], and
MNIST [37], to evaluate efficacy of Cronus. We use PyTorch [38] for our evaluations. We de-
fer the details of the dataset splits, model architectures, and hyper-parameters to Appendix D.1.

Baseline attacks. We evaluate FL and Cronus under LIE attack (Section 2) and our poisoning attacks
(Section 3), as well as with Label flip poisoning attack (Label flip) and Naive poisoning attack (PAF).
In the label flip attack, the adversary flips the labels of malicious clients’ local training data in the
same way and shares the updates computed on these poisoned datasets. The naive poisoning attack
(PAF) crafts malicious updates that are arbitrarily far from the average of the benign updates.

We compare the classification accuracies of the models trained using Cronus, stand-alone, central,
and parameter sharing (FedAvg) settings, in the absence of any attack. In the stand-alone setting,
each client trains its model only on its local data, without any collaboration. In centralized learning, a
single model is trained on the union of the clients’ data. For stand-alone and Cronus settings, the
accuracy of models for different clients is different; therefore, we report the average classification
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Table 2: Experimental setup: The number of malicious clients used for robustness assessment of different
AGRs based on their breaking points. The number of benign parties are shown on top of each column.

fAGG

Number of malicious parties
Breaking SVHN MNIST Purchase/CIFAR10

point 32 benign 28 benign 16 benign
Mean 1/n 1 1 1
Median 1/2 31 27 15
MWU 1/2 31 27 15
Krum (n− 2)/2n 29 25 13
Bulyan (n− 3)/4n 9 8 4
Cronus 1/2 31 27 15

Table 3: Comparison of the robustness of Cronus and of the parameter sharing based FL with various AGRs.
Robustness is measured as the ratio of worst accuracy and benign accuracy: worst accuracy is the accuracy of
the global model (for Cronus, this is the average accuracy of client models) under the strongest of all attacks
(Section 5); shown in "Strongest attack" row. While the benign accuracy is the accuracy without any attack.
Table 2 gives the numbers of benign and malicious clients. We highlight the best accuracy for each setting.
Table 5 in Appendix D.2.1 shows all the results.

Dataset
Parameter sharing based FL with various aggregation rules (AGRs)

Cronus
Mean Median MwuAvg MwuOpt Bulyan Krum

SVHN

Benign accuracy 95.9 94.8 93.9 94.4 94.5 89.6 91.1
Worst accuracy 0.9 14.5 0.9 0.7 15.5 16.2 89.8
Strongest attack (OFOM) (LIE) (OFOM) (OFOM) (LIE) (LIE) (LF)
Robustness 0.01 0.15 0.01 0.01 0.16 0.18 0.99

MNIST

Benign accuracy 96.7 96.5 97.2 97.4 96.9 93.3 95.2
Worst accuracy 9.6 91.5 25.3 12.7 94.1 89.9 93.7
Strongest attack (PAF) (PAF) (OFOM) (PAF) (LIE) (LF) (LF)
Robustness 0.09 0.95 0.26 0.13 0.97 0.96 0.99

Purchase

Benign accuracy 93.3 93.0 93.6 92.5 92.8 72.1 89.6
Worst accuracy 1.1 12.5 1.8 1.1 81.8 49.6 88.0
Strongest attack (PAF) (PAF) (OFOM) (OFOM) (LIE) (LIE) (LF)
Robustness 0.01 0.75 0.02 0.01 0.87 0.69 0.98

CIFAR10

Benign accuracy 88.4 89.1 86.2 87.6 89.0 84.5 80.1
Worst accuracy 11.3 15.1 14.2 12.8 75.6 18.0 78.0
Strongest attack (PAF) (PAF) (OFOM) (OFOM) (LIE) (LIE) (LIE)
Robustness 0.13 0.17 0.16 0.15 0.85 0.21 0.97

accuracy of all the client models. The accuracies of stand-alone, centralized, and Cronus settings for
Purchase are 76.3%, 94.3%, and 89.6%, respectively, while for CIFAR10 they are 66.8%, 90.2%, and
80.1%, respectively. Cronus uses unlabeled data for knowledge transfer, which any client can use to
improve its model’s accuracy via semi-supervised learning [39, 40, 41, 42]. However, a CIFAR10
model trained in a semi-supervised manner using Mean-Teacher method [39] with 2,500 labeled and
10,000 unlabeled data achieves 69.75% accuracy while Cronus achieves 80.1% accuracy. That is,
local models can achieve better accuracy via Cronus compared to the state-of-the-art semi-supervised
learning methods.

Robustness. We compare the robustness of FL, using different aggregation algorithms (Section 2
and Appendix A), against an adversary who mounts the strong poisoning attacks. To assess the
worst-case robustness, we evaluate algorithms against the largest fraction of malicious clients, which
is smaller than the breaking point. The number of benign and malicious clients are given in Table 2.
The robustness assessment results are shown in Table 3. From those results, it is clear that the FL
algorithm works well in the absence of malicious clients; however, all of the existing aggregation
schemes in FL are significantly vulnerable to at least one poisoning attack. The FedAvg [2] is
susceptible to all of the attacks: The accuracy of FedAvg reduces close to random guess accuracy for
all the datasets. Median aggregation is susceptible to PAF attack because the attack shifts the final
aggregate along all the dimensions by a small amount to remain undetected, yet it can considerably
damage the utility of the aggregated model. Although Bulyan and Krum are robust AGRs, they are
susceptible to the LIE attack. As explained in Section 2, LIE attack exploits the sensitivity of the
parameters of neural networks to small perturbations. The attack completely jeopardizes the accuracy
of Krum aggregation because the attack successfully forces Krum aggregation to select the malicious
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update as the aggregate in most of the epochs. Note that the attack is not effective against MNIST
classification task due to its simplicity, which allows the corresponding models to withstand the small
perturbations. MwuAvg and MwuOpt withstand all the attacks, but are susceptible to our new OFOM
attack, which we propose in Section 3. For all the datasets, the OFOM attack reduces the accuracy of
the aggregations close to the random guess accuracy.

On the other hand, the robustness of Cronus remains almost 1.0 as the classification accuracy of
its models remains unaffected by any of the tested poisoning attacks. For the strongest attack on
Cronus, the maximum reduction in accuracy is 0.4% for Purchase, 1.3% for SVHN, 1.5% for MNIST,
and 4.8% for CIFAR10 models. The reason for the high resilience of Cronus to the poisoning attacks
is two-fold. First, as detailed in Section 4, reduced dimensionality of updates enables the use of
robust aggregation algorithm RobustFilter [16]. It guarantees that the aggregate prediction is robust
even when the dimensionality of the prediction vector is high. For example, Cronus is still robust
on the Purchase dataset when the dimensionality of the prediction vector is 100. Second, benign
models have a stronger agreement on their predictions than on their parameter values. Thus, the
variance of the prediction vector is smaller than that of gradient, which makes the error guarantee for
aggregation algorithm RobustFilter even smaller. Hence, Cronus enjoys the tight robustness grantees
of RobustFilter providing a practical, robust collaborative learning protocol.

Privacy. We show that Cronus considerably reduces the privacy risks compared to FL; we measure
the privacy risk using the state-of-the-art membership inference attacks [26]. First note that, by design,
Cronus enjoys the benefits of knowledge transfer as a membership inference risk mitigation
technique [22, 43]. We further show the compatibility of Cronus with existing privacy-preserving
mechanisms [44, 34] in Tables 6 and 7. The key discoveries from our experimental results are: (1)
The updates in FedAvg are highly susceptible to membership inference, unlike the updates in Cronus.
For the Purchase dataset, attack accuracy against the individual and aggregated updates in FedAvg
is 78.1% and 80.1%, respectively, whereas in Cronus they are 51.7% and 51.9%. (2) The active
membership inference attacks [26] significantly increase the privacy risk of the target data in the case
of FedAvg. For Purchase dataset, the risk due to individual updates increases by 7.8% (77.1% to
84.9%), while due to aggregated update increases by 8% (74.7% to 82.7%). (3) In the case of Cronus,
the active membership inference attacks are ineffective, and the increase in privacy risk is negligible.
On Purchase dataset, the risk increases by 0.3% for individual updates while 1.1% for aggregated
updates. See experimental results and discussion in Appendix D.2.2.

Cronus with heterogeneous model architectures. Due to the use of prediction based updates,
Cronus allows clients with heterogeneous model architectures to participate in collaboration. The
key findings of our experimental evaluations are: (1) the heterogeneous collaboration between
models of equivalent capacities does not reduce the accuracy of client models compared to their
homogeneous counterparts, (2) the presence of a few bad models does not affect the accuracy of
the good models in the heterogeneous collaboration, while significantly benefits the bad models, and
(3) heterogeneity allows for more knowledge sharing via collaboration and always improves
the utility of collaborations. Due to space restrictions, we defer the details of experiments and
discussion to Appendix D.2.3.

6 Conclusions
We propose Cronus, a collaborative learning framework, to address three major issues of existing FL
algorithms: susceptibility to poisoning attacks, information leakage to the service provider (server),
and inability to support clients with heterogeneous model architectures. Instead of model parameters,
Cronus uses knowledge transfer via the predictions of the clients’ local models on an unlabeled public
dataset to exchange information between clients. Due to use of low-dimensional model outputs as
updates, Cronus allows the use of state-of-the-art robust mean estimation algorithms from robust
statistics literature. The combination of knowledge transfer and robust mean estimation algorithms
makes Cronus highly robust to poisoning attacks. Furthermore, due to sharing of predictions, Cronus
reduces the risk of information leakage to the server and allows collaboration between clients with
heterogeneous model architecture. Via extensive evaluations, we demonstrate all the three benefits of
Cronus—security, privacy, and support for heterogeneity.
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