
Algorithm 2 Federated learning algorithm [2, 1]

1: Initialize global model θ0a
2: for t ∈ [T] do
3: for i ∈ [n] do ▷ Party i’s local update
4: θti ← θta −∇θL(Di; θ

t
a)

5: Return θti to server
6: end for
7: θt+1

a = fAGG(θ
t
i∈[n]) ▷ Aggregation of updates at server

8: Return θt+1
a to all the parties

9: end for

A Aggregation algorithms

In this section, we describe the setting of federated learning and, various aggregation algorithms used
to combine the updates of the collaborating parties.

A.1 Federated learning setting

Federated learning [2, 1] enables multiple data holders to train a global model without sharing their
data, and through sharing of their training gradients/parameters [10, 45, 8, 46, 9]. For concreteness,
below we describe Federated Average (FedAvg) algorithm [2] and its setting, and use it in the rest of
our work. In FedAvg, multiple parties collaborate over multiple epochs to learn a global machine
learning model with a classification performance superior to the models learned individually. FedAvg
assumes that there are n parties with their local training datasets, Di’s, and a central server which
aggregates the party updates and broadcasts the aggregate to all of the parties. In the tth epoch of
FedAvg, parties train the aggregate θta, broadcast by the server at the end of tth epoch, on their local
training data, Di. Parties use stochastic gradient descent for updating, i.e., θti = θta −∇θL(Di; θ

t
a),

where L(D; θ) is loss of θ on data D. Each party then sends the parameters of the locally updated
model, θti , to the server for aggregation. The central server collects all the θti updates and computes
their aggregate θta = fAGG(θ

t
i∈[n]). Specifically, FedAvg uses the weighted average as its fAGG, where

the weight of the ith party is determined based on the size of her local training data, i.e., wi =
|Di|
|D| ;

|D| denotes size of dataset D. The weighted average is formally given by:

fMean : θt+1
a =

n∑
i=1

|Di|∑n
j=1 |Dj |

θti (1)

The server then broadcasts the aggregate θta to all n parties. This process repeats for T epochs or
until sufficient accuracy is achieved by the aggregated global model. The procedure is described in
Algorithm 2. This algorithm is not robust against poisoning attack and even a single party can destroy
the global model.

A.2 Krum

Weighted average aggregation cannot tolerate even a single malicious party [10, 47]. To solve this
problem, Blanchard et al. [10] proposed Krum aggregation, which is based on geometric median of
vectors [48, 8]. The intuition behind Krum is as follows: Krum assumes that party updates have a
normal distribution and that the benign updates lie close to each other in the parameter space. Hence,
instead of computing the average of the updates, Krum selects as aggregate the update that is closest
to its (1− ϵ)n neighbor updates. The details of the aggregation are as follows. Let θ1, ..., θn be the
updates received by the server. For i ̸= j, i → j denotes that θj belongs to the (1− ϵ)n− 2 updates
closest to θi. Let s(θi) =

∑
i→j ||θi − θj ||2 be the score of θi. Then, Krum selects the θk with the

lowest score. The Krum aggregation algorithm is formalized in (2).

fKrum : θt+1
a = argmin

θt
i∈[n]

∑
i→j

||θti − θtj ||2 (2)

12

A.3 Bulyan

The breaking point of Krum is ϵ = (n−2
2n), i.e., it can tolerate up to (n−2

2) malicious parties, while
maintaining high utility of the final model [10]. However, El Mhamdi et al. [8] proposed an attack
on Krum assuming an omniscient adversary who has access to all the benign updates. The attack
exploits the fact that, in a vector space of dimension d ≫ 1, small disagreements on each coordinate
translate into a distance ∥x − y∥p = O(p

√
d). Therefore, the adversary crafts a malicious update

with a single dimension set to a large value, and the other dimensions set to the average of the benign
updates. Such malicious update pushes the parameter vector to a sub–optimal parameter space and
destroys the global model’s accuracy. Essentially, Krum filters outliers based on the entire update
vector, but does not filter coordinate-wise outliers. To address this, [8] proposes a meta-aggregation
rule Bulyan, which performs vector-wise, e.g. Krum, and coordinate-wise, e.g. TrimmedMean [9],
filtering in two steps. At first, Bulyan uses some Byzantine resilient aggregation A, e.g., Krum in
Algorithm 3, to filter outliers based on the distances between the update vectors, and then aggregates
these updates using a variant of TrimmedMean. Algorithm 3 describes the Bulyan aggregation.

Algorithm 3 Bulyan aggregation: fBulyan [8]

1: Input: A = fKrum, P = (θt1, ..., θ
t
n), n, ϵ

2: S ← ∅
3: while |S| < (1− 2ϵ)n do
4: p← A(P\S)
5: S ← S ∪ {p}
6: end while
7: Output: θt+1

a = TrimmedMean(S)

Among the different variants of TrimmedMean [46, 8, 9], we follow the one used in the original work
[8] given in (3). Here, Uj is defined as the set of indices of the top-(1− 2ϵ)n values in (θj1, ..., θ

j
n)

nearest to their median µj .

TrimmedMean(θ1, ..., θN) =

{
θja =

1

|Uj |
∑
i∈Uj

θji ∀j ∈ [d]

}
(3)

A.4 Multiplicative weight update (MWU)

Multiplicative weight update (MWU) technique lies at the core of many learning algorithms [24, 27,
28, 29, 25]. The general framework of MWU is given in Algorithm 4. The intuition behind MWU-
based aggregations is to reduce the weights of malicious parties using the distance between their
malicious updates and the aggregated update. This is based on two assumptions: malicious updates
lie farther away from the mean compared with the benign updates, and the number of malicious
updates is smaller than that of the benign updates. Therefore, MWU-based aggregation schemes have
the breaking point of ⌊n−1

2 ⌋ malicious parties.

Algorithm 4 Multiplicative weights update: fMWU

1: Input: P = (θt1, ..., θ
t
n)

2: Initialize parties’ weight vector w0 ← 1 and θ0a ← fAGG(w
0,P) at t = 0

3: repeat
4: wt+1 ←WeightUpdate (wt, θta,P)
5: θt+1

a ← fAGG(w
t+1,P)

6: t← t+ 1
7: until Convergence criterion is satisfied
8: Output: final θa

There are different variants of MWU that use different functions for WeightUpdate and fAGG in
Algorithm 4. We detail two of them next.

13

A.4.1 MWU with mean aggregation

In MWU, if the weighted mean is used as the aggregation algorithm, fAGG in Algorithm 4, it is called
MwuAvg. Here, the weight of the ith party is updated based on the distance between the weighted
average, θta, of all the updates and θi; this is given by (4). The weights of all the parties are equal at
the beginning.

wt+1
i = wt

i exp(−||θta − θi||p) (4)

θt+1
a =

∑n
i=1 w

t+1
i θi∑n

i=1 w
t+1
i

(5)

A.4.2 MWU with optimization

Li et al. [25] propose a truth discovery framework CRH, to aggregate the responses in a crowd-
sourcing setting. In each epoch, the framework updates the weights of parties based on the solution of
an optimization problem. Essentially, the weight update algorithm considers the distance of parties’
updates from the aggregate of all the updates in each epoch. The weight update and aggregate
computation are given by (6) and (7), respectively. For further details of the aggregation, please refer
to [25].

wt+1
i = −log

(
||θt − θi||p∑n
i=1 ||θt − θi||p

)
(6)

θt+1 =

n∑
i=1

wt+1
i θi (7)

B Attacks on Aggregation Algorithms

In this section, we detail the poisoning and membership inference attacks used in our work to evaluate
the robustness and privacy in federated learning. The poisoning attacks are of two types: availability
and targeted attacks. The earlier attacks aim to jeopardize the overall accuracy of the final model/s
[6, 49, 50], while the latter attacks aim to mis-classify only a specific set of samples of the attacker’s
choice at the test time [12, 11]. We focus on the poisoning availability attacks and below introduce
such attacks from the literature, and also introduce a new poisoning attack targeting the MwuAvg and
MwuOpt aggregations.

B.1 Label flip poisoning (Label flip)

We consider a type of data poisoning attacks [51, 52, 49], where the adversary flips the labels of
her local training data in a particular fashion to poison it. We call this attack label flip poisoning
attack. The label flipping strategy is performed consistently across all of the ϵn malicious parties that
the adversary controls, i.e., all the malicious parties flip labels in the exact same way. Then, the ϵn
malicious parties (also called as Byzantine workers in the literature) use this poisoned data to train
their local models and then share corresponding updates with the central server.

B.2 Naive poisoning (PAF)

Our threat model considers an omniscient adversary who knows the distribution of benign updates,
i.e., the mean and standard deviation of each dimension of benign updates. The adversary can estimate
this distribution as she possesses data drawn from the distribution same as that of benign parties.
Given this, the adversary crafts the malicious update θm to be arbitrarily far from the mean of the
benign updates:

θm =

∑(1−ϵ)n
i=1 θi

(1− ϵ)n
+ θ′ (8)

14

This malicious update, θm, is then shared by each malicious party with the central server. In (8), θ′ is
a vector of size |θi| with arbitrarily large (or small) coordinate values. This attack can jeopardize the
weighted averaging, and interestingly, weighted median aggregations based federated learning.

B.3 Little is enough attack (LIE)

Baruch et al. [6] propose an attack called little is enough (LIE). The attack successfully circumvents
state-of-the-art robust aggregation algorithms, including Bulyan and Krum. These aggregations are
vulnerable to the attack, because they are tailored to an adversary that crafts a malicious update with
at least one arbitrarily large dimension. However, in practice, a malicious update, θm, obtained by
small perturbations in a large number of dimensions of a benign update suffice to affect model’s
convergence and also circumvent the defenses. Therefore, note that, the root cause of the success of
the LIE attack is also the high dimensionality of the updates. The attack is described in Algorithm.
5. The s in the Algorithm. 5 is the number of non-corrupted parties, whose deviation from mean is
more than malicious parties, needed in order to bypass the detection. Assume the distributions of
different parameters from all parties can be expressed by a normal distribution, z will set the range in
which the adversary updates can deviate from the mean without being detected. µ̄, σ̄ are the mean
and variance of the distribution of the parameters from benign updates.

B.4 Our poisoning attack (OFOM)

In this section, we propose an attack which targets aggregation schemes that perform weighted
aggregation of data by assigning the weights based on the distance of the data points from an
aggregate of the data. These aggregations are robust to all the above attacks, as we show in our
evaluation. We discussed two such aggregation schemes: MWU with averaging [24] and MWU with
optimization [25] in Section A.4. In any given epoch, the aforementioned aggregation schemes start
with equal weights to all parties and update a party’s weight based on the distance of the party’s
update from weighted average of all party updates. The attack exploits the fact that, all parties are
given equal weights to start with. The OFOM attack craft two malicious updates: The first update,
θm1 , is arbitrarily far away from the true mean, and is obtained by adding an arbitrarily large (or small)
vector θ′ to the mean of benign updates. The second malicious update, θm2 , is at the empirical mean
of benign updates and θm1 . The malicious updates are formalized in (9).

θm1 =

∑(1−ϵ)n
i=1 θi

(1− ϵ)n
+ θ′, θm2 =

∑(1−ϵ)n
i=1 θi + θm1
(1− ϵ)n+ 1

(9)

This way, at the end of the first epoch of the MWU aggregation, the adversary manages to assign a
weight close to 1 to the parties with update θm2 . In the case of MWUAvg and MWUOpt, all the benign
parties are assigned negligible weights, which completely jeopardizes the accuracy of aggregation.
To be effective, the adversary needs just two malicious parties who share the two malicious updates.

B.5 Membership inference attacks

Recent research has shown the susceptibility of the federated learning to active and passive inference
attacks [7, 26]. In the passive case, the attacker, either the server or some of the parties, simply

Algorithm 5 Little is enough attack (LIE) [6]

1: Input: n, ϵ, mean and variance vectors of benign updates µ̄, σ̄
2: Number of workers required for majority:

s = ⌊n
2
+ 1⌋ − ϵn

3: Using z-table, set z = max
z

(
ϕ(z) < (1−ϵ)n−s

(1−ϵ)n

)
4: for j ∈ [d] do
5: θjm ← µ̄j + zσ̄j

6: end for
7: Output: malicious update θm

15

observes the updated model parameters to mount membership inference attacks. In the active case,
however, the attacker tampers with the training of the victim model/s in order to infer membership
of target data in any of the benign party’s data. Specifically, the attacker shares malicious updates
and forces the victim model/s to share more information about the members of their training data
that are of the attacker’s interest. This attack, called gradient ascent attack [26], exploits that the
SGD optimization updates model parameters in the opposite direction of the gradient of the loss over
the private training data. Let x be a record of attacker’s interest and θa be the current global model.
The attacker crafts the malicious update θm by updating parameters of θa in the same direction of
the gradient of the loss on x, i.e., performs gradient ascent as: θm = θa + γ ∂Lx

∂θa
. Such θm, when

combined with the benign updates, increases the loss of the resulting global model, θ′a, on x. If x
is in the training data of some party, SGD on θ′a by this party will sharply reduce the loss of x. On
the other hand, if x is not in any party’s training data, the loss of x will remain almost unchanged.
Therefore, this attack increases the gap between the losses of θa on members and non-members and
facilitates membership inference.

C Robust mean estimation

Cronus uses the robust mean estimation algorithm proposed by Diakonikolas et al. [16], which
achieves the optimal error bound. The original algorithm is described in Algorithm 6. fCronus applies
RobustFilter on the prediction of each public data. Recall that the intuition of this robust mean
estimation [16] is that the empirical mean of the uncorrupted points should be concentrate nicely to
the true mean µ of the distribution. Thus, if the empirical mean is µ̂ far from the true mean of the
distribution, then along the direction µ̂− µ, the outliers must be the source of the deviation and the
variance is much larger than it should be. As a result, corrupted direction µ̂− µ can be detected as
a large eigenvector of the empirical covariance. Hence, in the Algorithm 6 finds the direction v∗,
which has the largest variance and projects the deviation of all the inputs from the empirical mean in
this direction. Then filter out a randomized fraction of the data which are farthest from the mean,
Ȳ , along this direction. Repeat the process until the variance is not large in every direction and then
output the sample mean on the subsets. For further details of the robust mean estimation, please refer
to [16, 17].

Algorithm 6 RobustFilter [Algorithm 3 [16]]

1: Input: S, ϵ, k=0
2: while True do:
3: Compute Ȳ ,Σ, the mean and covariance matrix of S.
4: Find the eigenvector v∗ with highest eigenvalue λ∗ of Σ
5: if λ∗ ≤ 9 then
6: Let Ȳ = Ȳ
7: break
8: else
9: Draw Z from the distribution on [0,1] with probability density function 2x

10: Let T = Zmax{|v∗ · (Y − Ȳ)| : Y ∈ S}.
11: Set S = {Y ∈ S : |v∗ · (Y − Ȳ)| < T}
12: end if
13: end while
14: Output: Ȳ

The sample complexity of the Algorithm 6 is Θ(d/ϵ log d), where d is the dimensionality of the inputs.
In the federated learning, d is the size of the model and in Cronus, d is the size of prediction. Table 4
shows the sample complexities for training different ML benchmark models with federated learning
versus Cronus, using RobustFilter’s algorithm RobustFilter. We note that Cronus significantly
reduces sample complexity (by an order of 105), and therefore, unlike any existing federated learning,
can achieve strong theoretical error guarantees even with a small number of parties in the network.

For the theoretical analysis, Algorithm 6 uses randomized filtering (step 9) and repeats until the stop
condition is satisfied (step 5). The follow-up works from the same authors [17, 53] suggest a simpler
algorithm to obtain a better performance in practice: (1) in each iteration, remove a deterministic
fraction of the data instead of a random fraction. (2) repeat the filter for constant iterations in total. In

16

Table 4: Sample complexity, Θ((d/ϵ) log d), of Cronus aggregation, using [16], for parameters and predictions
updates. For parameters, d is size of model; for predictions, d is the number of classes in the classification task.
The ratio shows that Cronus learning can achieve the same error guarantee as in federated learning, but with a
network which is 5 orders of magnitude smaller, for benchmark ML tasks.

Dataset Sample complexity ratio of Federated learning over Cronus
SVHN 1.2× 105

MNIST 3.3× 105

Purchase 2.75× 105

CIFAR10 10.4× 105

Table 5: Evaluation of the conventional federated learning with various aggregation schemes with Cronus
learning using the strong poisoning attacks described in Section 5. Robustness in Table 3 is measured as the
ratio of the accuracy of the final model/s when the strongest attack is mounted and the accuracy in the benign
setting; the strongest attack is determined empirically as the one that maximally reduces the accuracy of the
corresponding federated learning aggregation.

Dataset
Federated learning with various aggregation algorithms

Cronus
Mean Median MwuAvg MwuOpt Bulyan Krum

SVHN

Accuracy (Benign) 95.9 94.8 93.9 94.4 94.5 89.6 91.1
Label flip 92.9 90.1 91.2 89.3 93.9 88.6 89.8

LIE 14.8 14.5 91.6 92.0 15.5 16.2 91.5
OFOM 0.9 94.5 0.9 0.7 94.4 89.0 91.0

PAF 12.8 16.4 95.1 93.1 93.4 87.5 91.1

MNIST

Accuracy (Benign) 96.7 96.5 97.2 97.4 96.9 93.3 95.2
Label flip 96.3 94.4 94.7 93.6 96.8 89.9 95.0

LIE 95.1 93.1 95.6 96.7 94.1 94.3 95.9
OFOM 22.1 97.3 25.3 36.0 97.1 94.4 96.1

PAF 9.6 91.5 96.9 12.7 97.1 94.0 96.2

Purchase

Accuracy (Benign) 93.3 93.0 93.6 92.5 92.8 72.1 89.6
Label flip 88.9 89.9 63.4 67.6 91.7 74.8 88.0

LIE 2.5 69.3 92.2 85.6 81.8 49.6 89.2
OFOM 1.4 92.8 1.8 1.1 92.6 74.5 89.4

PAF 1.1 12.5 93.0 88.0 91.0 76.6 89.4

CIFAR10

Accuracy (Benign) 88.4 89.1 86.2 87.6 89.0 84.5 80.1
Label flip – – – – – – 79.8

LIE 18.9 61.2 86.0 84.3 75.6 18.0 78.0
OFOM 12.9 89.5 14.2 12.8 89.1 85.0 78.5

PAF 11.3 15.1 86.4 85.0 89.0 839 79.0

the evaluation, we filter out ϵ/2 fraction of the inputs in each iteration (step 12) and repeat the filter
process 2 times (step 7) and to obtain a good performance.

D Missing Experimental Details

D.1 Details of datasets and model architectures

We use four datasets in our evaluation, whose details follow.

SVHN. SVHN [36] dataset contains Google’s street view images of house numbers. The images are
32x32, with 3 floating point numbers containing the RGB color information of each pixel. We use
the extended SVHN dataset with 630,420 samples to train 32 party models each with 5,000 training
samples; the public data size is 10,000. We use validation and test data of sizes 2,500 each. The
reference data required for adversarial regularization is of the same size as that of training data for
the cases of all the datasets.

MNIST. MNIST [37] dataset contains 28x28 images of handwritten digits and is composed of
60,000 training samples and 10,000 test samples. The dataset contains 10 classes each with 60,000

17

training and 1,000 test samples. We use validation and test data of sizes 1,000 each. We use 28 parties
each with 2,000 training and reference samples, and public data size is 10,000.

Purchase. Purchase [54] dataset contains the shopping records of several thousand online customers,
extracted during Kaggle’s Acquire Valued Shopper challenge [54]. The dataset contains 197,324 data
records with feature vectors of 600 dimensions and corresponding class label from one of total 100
classes. We use validation and test data of sizes 2,500 each. We use 16 parties each with 10,000
training and reference data, and public data size is 10,000.

CIFAR10. CIFAR10 [35] has 60,000 color (RGB) images (50,000 for training and 10,000 for
testing), each of 32 × 32 pixels. The images are clustered into 10 classes based on the objects in the
images and each class has 5,000 training and 1,000 test images. We use validation and test data of
sizes 2,500 each. We use 16 parties each with 2,500 training data, and public data size is 10,000.

Model architectures. For SVHN, we use a neural network with three convolution layers and
one fully connected layer, and Relu activations. For the MNIST dataset, we use a fully connected
neural network with layer sizes {784, 256, 64, 10} and Relu activations. For the Purchase dataset,
we use fully connected neural networks with layer sizes {600, 1024, 100} and Tanh activations.
For CIFAR10 dataset, we use DenseNet architecture [55] with 100 layers and growth rate of 12.
For the heterogeneity experiments with Purchase dataset, we use 5 fully connected networks with
hidden layer sizes [{},{1024},{512, 256},{1024, 256}, {1024, 512, 256}]; here {} implies that the
corresponding model has no hidden layers.

Training hyper-parameters. The initialization and collaboration phases of SVHN, MNIST, and
Purchase trained models are of 50 epochs each. In both the phases, we train party models on their
local training data using Adam optimizer at 0.0005 learning rate. Additionally, in collaboration
phase, i.e., for epochs 50-100, we train party models on public data, (Xp, Ȳ), using SGD optimizer
at a learning rate of 0.001. For CIFAR10, we train models for 200 epochs using SGD optimizer
with 0.1 learning rate, 0.9 momentum, and 10−4 weight decay in both the phases. Additionally, in
collaboration phase, we train the models on public data using SGD optimizer at 0.01 learning rate,
0.99 momentum, and 10−6 weight decay.

For experiments of membership privacy assessment, we use state-of-the-art whitebox inference model
proposed in [26], and use the gradients and outputs of its last layer, in addition to the blackbox access
features including prediction of input and its cross-entropy loss. We train the inference model using
Adam optimizer at a learning rate of 0.0001 for 100 epochs.

D.2 Missing Empirical Results

In this section, we provide the experimental details omitted in Section 5.

D.2.1 Robustness

Here, we give the complete robustness assessment of Cronus and FedAvg. In Table 3 of Section 5, for
each dataset and each aggregation algorithm, we showed the accuracy of the attack that is strongest
among all the attacks discussed in Section 5. We compute empirical robustness of aggregation
algorithms using this strongest attack as described in Section 5. In Table 5, we give the complete
evaluation of all the attacks on all of the aggregation algorithms and datasets we consider in this
work. The ‘Accuracy (Benign)’ row of each dataset shows the results in the absence of adversary.
The worst accuracy for a combination of aggregation algorithm and dataset is highlighted in the
corresponding column; the corresponding strongest attack can be found from the label of the row of
the highlighted cell. Observe that, label flip attack seems to have lower effect on mean aggregation
than the other aggregations; this is because, unlike other aggregations, in case of mean, there is only
single malicious client. Note that, MWUAvg and MWUOpt aggregations are robust against all the
existing attacks in the literature, but are completely ineffective against the attack we introduced in
Section B.4. Also, note that, Bulyan aggregation is empirically the most robust aggregation after
Cronus, but it allows only 25 - 33% malicious clients compared to other aggregation algorithms such
as Krum, in other words, Bulyan has a very low breaking point. The numbers of malicious parties
used in each of our experiments are given in Table 2.

18

0 20 40 60 80 100

70

80

90

Epochs

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Purchase, No attack

0 20 40 60 80 100

70

80

90

100

Epochs

MNIST, No attack

0 50 100 150

70

80

90

Epochs

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

CIFAR10, No attack

0 20 40 60 80 100

70

80

90

100

Epochs

Cronus

Mean

Median

MwuAvg

MwuOpt

Bulyan

Krum

SVHN, No attack

Figure 1: Convergence of Cronus and existing federated learning algorithms in benign setting. Cronus incurs
only a slight degragation in accuracy compared to existing algorithms, while improves significantly over stand-
alone training.

Convergence plots. Figure 1 shows the convergence of Cronus and various aggregation algorithms
in federated learning for the benign setting. In Figure 2, However, all of the existing aggregation
schemes in federated learning fail to converge under at least one poisoning attack. Cronus incurs only
a slight reduction in accuracy at a significantly higher gain in robustness and privacy as shown in
Sections 5 and 5.

D.2.2 Privacy

In this section, by measuring the privacy risk using state-of-the-art membership inference attack, we
show that Cronus considerably reduces the privacy risk compared with federated learning. We also
show the compatibility of Cronus with existing privacy-preserving mechanisms. We evaluate the risk
of membership inference attacks on the participants’ private training data during collaboration, and
the effect of privacy preserving mechanisms [34, 56]. As described in the threat model in Section 2,
we assume the central server and other participants to run passive and active membership inference
attacks [26] on individual party updates and their aggregates. We use Purchase, SVHN, and CIFAR10
datasets for our evaluation when 4 parties collaborate.

Passive membership inference attacks

In the case of passive membership inference attacks, the server isolates the parties and mounts the
attack separately on each of the collected updates, i.e., in case of FedAvg, attack is mounted on the
parameter updates of each party and in case of Cronus, attack is mounted on the model obtained by
training on the predictions shared by each party. We also evaluate the privacy risk when the attack is
mounted on the aggregate of these updates.

The results are shown in Table 6. The updates in FedAvg are highly susceptible to membership
inference unlike the updates in Cronus. For the Purchase dataset, attack accuracy against the
individual and aggregated updates in FedAvg is 78.1% and 80.1%, respectively, whereas in Cronus

19

0 20 40 60 80 100

0

20

40

60

80

Epochs

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Purchase, Strongest attack

0 20 40 60 80 100

20

40

60

80

100

Epochs

MNIST, Strongest attack

0 50 100 150

0

20

40

60

80

Epochs

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

CIFAR10, Strongest attack

0 20 40 60 80 100

20

40

60

80

100

Epochs

Cronus

Mean

Median

MwuAvg

MwuOpt

Bulyan

Krum

SVHN, Strongest attack

Figure 2: Convergence of Cronus and existing federated learning algorithms in adversarial setting. Accuracy
of Cronus in adversarial setting is almost the same as in benign setting (shown in Figure 1) due to its high
robustness. Except for CIFAR10, for which only collaboration phase is shown, both the Cronus training phases
are shown in figure and the collaboration phase starts at epoch 50.

they are 51.7% and 51.9%. Unlike the prediction updates in Cronus, the high dimensional parameter
updates in FedAvg encode a significantly higher amount of information about the party’s local
data. Furthermore, knowledge transfer acts as a strong regularization method and mitigates the risk
of membership inference attacks [18, 57]. It’s important to note that knowledge transfer through
predictions, on a dataset other than the training data, makes the behavior of the student model more
indistinguishable on its training versus unseen data. This happens as the distillation process does not
carry the exceptionally distinguishable characteristics of the model on its training data, and results
in smooth decision boundaries of the student model around the teacher’s training data. We observe
similar results for SVHN and CIFAR10 datasets.

We also evaluate Cronus and FedAvg, when models use adversarial regularization [56] during
local training to improve membership privacy. We note that, adversarial regularization improves
membership privacy of both FedAvg and Cronus, but the increase is smaller for Cronus due to its
inherent resilience to membership inference. For Purchase dataset with FedAvg, the risk to individual
and aggregated updates reduces by 9.9% and 12.7%, respectively, while for Purchase with Cronus,
the risk to individual and aggregated updates is already very small, and it further reduces by 0.6%
and 1.1%, respectively. Similarly for CIFAR10, privacy improvement in FedAvg is significantly more
than in Cronus. However, the privacy improvement for SVHN is very small even in case of FedAvg,
due to large gaps in train and test accuracies at stronger adversarial regularization.

Active membership inference attacks

In each epoch, the server manipulates the aggregate update that it broadcasts to parties by performing
gradient ascent on the aggregated update for a set of target data [26]. In FedAvg, gradient ascent is
performed directly on the aggregated parameters. In Cronus, for running such attack, the server needs
to train a model on the aggregated predictions while performing gradient ascent on the target data,

20

Table 6: Accuracy of passive and active membership inference attacks with central server as adversary. We also
evaluate effect of adversarial regularization (with parameter λ) used to preserve membership privacy. We use 4
parties and data per party is stated in the D.1.

Dataset
Federated Attack on party update Attack on aggregated update
learning Passive Active Passive Active

algorithm attack acc. attack acc. attack acc. attack acc.

Purchase FedAvg 77.1 84.9 74.7 82.7
(without privacy) Cronus 54.6 54.9 53.6 54.7

Purchase FedAvg 70.8 77.3 69.9 77.0
(with membership privacy, λ = 3) Cronus 54.1 51.5 53.7 54.6

SVHN FedAvg 64.8 67.3 59.9 64.3
(without privacy) Cronus 55.6 53.1 56.5 55.7

SVHN FedAvg 64.9 67.0 60.0 64.2
(with membership privacy, λ = 0.5) Cronus 54.1 56.9 55.6 55.0

CIFAR10 FedAvg 79.9 80.5 76.8 77.1
(without privacy) Cronus 57.0 57.8 55.5 56.7

CVIFAR10 FedAvg 59.9 64.1 59.6 62.2
(with membership privacy, λ = 1) Cronus 52.9 54.4 52.6 57.0

0 50 100

0

5

10

Epoch

∇
L
(D

t
)
−
∇
L
(D

) FedAvg
Cronus

0 50 100

0

5

10

Epoch

∇
L
(D̄

t
)
−
∇
L
(D̄

)

0 50 100

0

5

10

Epoch
∇
L
(D̄

t
)
−
∇
L
(D

t
)

Figure 3: Difference in the gradient-norms, ∇L(D), of the last layer of aggregated model on the target and
non-target data (Purchase100 data). In the context of active membership inference attacks, D, Dt, D̄, and D̄t

denote non-target members, target members, non-target non-members, and target non-members, respectively.

and then, shares predictions of this model with the parties; we ensure that such model has accuracy
close to the accuracy of party models in given epoch.

Table 6 shows the results. The active attacks significantly increase the privacy risk of the target
data in case of FedAvg: for Purchase dataset, the risk due to individual update increases by 7.8%
(77.1% to 84.9%), while due to aggregated update increases by 8% (74.7% to 82.7%). But, in case
of Cronus, the active attacks are ineffective and the increase in risk is negligible: 0.3% for
individual update while 1.1% for aggregated update. In Figure 3, we show the effect of gradient
ascent on the difference in gradient-norms of target and non-target data for aggregated model for the
Purchase dataset. This directly correlates with the success of membership inference [26]. We observe
that, for FedAvg on SVHN dataset, the active attacks increase the risk to individual and aggregate
updates by 2.5% and 4.4%, respectively, but, the increased risk negligible for Cronus.

Differential privacy We compare the performance of Cronus and the conventional federated learning
with user-level [58] (the server applies differentially private mechanism) or record-level [34] (each
party applies differentially private mechanism) differential privacy. For both of these comparisons, we
use SVHN dataset with 32 benign parties and the model architecture as described in Table 2, and use
the moments accountant method (and the code) [34, 59] to bound the total privacy risk. Note that we
train the whole model using differential privacy, as opposed to only training the last layer [34]. Our
results show that robustness property of Cronus , as expected, is preserved with differential privacy.

User-level DP [58]. The user-level DP (UDP-FedAvg) algorithm proposed by McMahan et al. [58]
cannot lead to training good accuracy models, when the number of parties in each epoch is small.
Even for large privacy budgets, i.e., ϵ = 100, the parties do not benefit from collaboration, and with
the user-level DP, the global model in FedAvg achieves close to random-guess accuracy. We observed

21

Table 7: Accuracy and robustness of models for record level DP [34] with ϵ = 15.4 on the SVHN dataset. The
baseline stand-alone accuracy is 87%.

of Accuracy (Benign) Worst accuracy Robustness
parties FedAvg Cronus FedAvg Cronus FedAvg Cronus

32 65.7 85.8 4.5 83.1 0.07 0.97
16 74.3 84.8 8.1 84.0 0.11 0.99
8 77.9 84.2 0.9 82.2 0.01 0.98
4 81.6 81.5 1.7 81.2 0.02 0.98

similar results for running user-level DP on Cronus with small number of participants. This result is
expected as the sensitivity of the element-wise mean aggregation algorithm is inversely proportional
to the number of parties, and a very large number of parties is required to reduce the noise, e.g., [58]
uses 5000 parties in each epoch which is not realistic in cases where a few data holder (hospital)
collaborate.

Record-level DP [34]. We empirically show that the conventional parameter aggregation in FedAvg
is not suitable to provide the record-level DP, and is also susceptible to poisoning attacks. The results
are shown in Table 7 for SVHN dataset. The accuracy of the models for federated learning or Cronus,
with DP-SGD, cannot reach the accuracy of stand-alone training, which makes the collaboration
useless. The results of the strongest poisoning attacks show that DP-SGD FedAvg has no robustness
against the attacks.

D.2.3 Cronus with heterogeneous model architectures

Due to the use of predictions based updates, Cronus allows parties with heterogeneous model
architectures to participate in collaboration. Below, we compare different aspects of the homogeneous
and heterogeneous collaborations. We use Purchase data and 5 fully connected models, which we call
A1, A2, A3, A4, and A5, with hidden layer sizes {}, {1024}, {512, 256}, {1024, 256}, and {1024,
512, 256} respectively. Note that, A1 models, called bad models, have lower capacity and accuracy
than A2-5 models, which we call good models. We denote by Pj:k the model architectures of parties
∈ [j, k]. We denote the entire collaboration in curly brackets, e.g., we denote the collaboration of
3 sets of 4 models, i.e. 12 models in total, each with either of A3, A3, or A4 models by {P1:4 =
A2, P5:8 = A3, P9:12 = A4}. In tables, accuracy of an architecture is the average accuracy of all the
models with that architecture, e.g., in Table 9 accuracy of A2 is average of accuracies of all models
with A2 architecture in the two collaborations.

First, we show that the heterogeneous collaboration between models of equivalent capacities does not
reduce the accuracy of party models compared to its homogeneous counterparts. We consider four
homogeneous collaborations each of 16 parties such that {P1:16 = A2}, {P1:16 = A3}, {P1:16 = A4},
and {P1:16 = A5}, and compare it with a heterogeneous collaboration: {P1:4 = A2, P5:8 = A3, P9:12

= A4, P13:16 = A5}. The results are shown in Table 8.

Next, we show that the presence of a few bad models does not affect the accuracy of the
good models in the heterogeneous collaboration, while significantly benefits the bad models.
Specifically, we show that accuracy of the collaboration of 12 good models, i.e., {P1:4 = A2, P5:8 =
A3, P9:12 = A4} remains unaffected even if 4 bad models are added to it, i.e., P13:16 = A2, as shown
in Table 9.

Finally, we show that heterogeneity allows for more knowledge sharing via collaboration and
always improves the utility of collaborations. We consider 4 homogeneous collaborations: {P1:4

= A1}, {P1:4 = A2}, {P1:4 = A3}, and {P1:4 = A4} and compare them with a heterogeneous
collaboration that includes all these 16 parties, i.e., {P1:4 = A1, P5:8 = A2, P9:12 = A3, P13:16 = A4}.
Table 10 shows that including more participants clearly benefits all types of models, although the bad
models benefit more than the good ones. For instance, A1 models improve by 8% from 70.1% to
78.1% due to heterogeneous collaboration, while A2, A3, and A4 models improve by 3.2%, 2.2%,
and 1.4%, respectively.

22

Table 8: Comparison between heterogeneous and homogeneous collaborations in Cronus.
Homogeneous Heterogeneous

P1:16 → A2 A3 A4 A5
{P1:4 = A2, P5:8 = A3

P9:12 = A4, P13:16 = A5}
89.6 89.3 88.4 88.6 89.3

Table 9: Effect of the presence of low accuracy bad models on the performance of higher accuracy good models.
n is the number of collaborating parties.

Models
Heterogeneous Heterogeneous

{P1:4 = A2, P5:8 = A3, {P1:4 = A2, P5:8 = A3,
P9:12 = A4} P9:12 = A4, P13:16 = A1}

A1 - 78.1
A2 88.5 88.7
A3 88.6 88.1
A4 88.7 88.1

Table 10: More participation due to heterogeneity always improves the overall utility of the collaboration.

Models
Homogeneous Heterogeneous

4 small collaborations {P1:4 = A2, P5:8 = A3,
P1:4 = A1/A2/A3/A4 P9:12 = A4, P13:16 = A1}

A1 70.1 78.1
A2 85.5 88.7
A3 85.9 88.1
A4 86.7 88.1

23

