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Abstract

Federated Learning is a distributed Machine Learning framework aimed at train-
ing a global model by sharing edge nodes’ locally trained models instead of their
datasets. This presents three major challenges: communication between edge nodes
and the central node; heterogeneity of edge nodes (e.g. availability, computing,
datasets); and security. In this paper we focus on the communication challenge,
which is two-fold: decreasing the number of communication rounds; and com-
pressing the information sent back and forth between edge nodes and the central
node. Particularly, we are interested in cases where strict constraints over the
allowed network traffic of gradients may apply – e.g. frequent training of predictive
models for globally distributed devices. The recent success of 1-bit compressor
(e.g. majority voting SIGNSGD) is promising; however, such high-compression
methods are known to have slow (or problematic) convergence. We propose a
Bayesian framework, named BB-SIGNSGD, encompassing 1-bit compressors for
a principled and flexible choice of how much information to carry from previous
communication rounds during central aggregation. We prove that majority voting
SIGNSGD is a special case of our framework when particular choices are taken
within it. We present results from extensive experiments in five different datasets.
We show that, compared to majority voting SIGNSGD, other choices within BB-
SIGNSGD support higher learning rates to achieve faster convergence, competitive
even with uncompressed communication.

1 Introduction

The main components of modern machine learning applications are data and computational power [23].
More specifically, deep neural network models are known to be both data-intensive and computation-
ally hungry. However, in some applications collecting vast amounts of data from model training may
raise security and privacy concerns (e.g., mobile phones, healthcare, smart cars, storage systems, etc.).
Federated Learning (FL) has emerged as a framework for addressing these concerns by performing
the model training on the user device, leveraging the device’s computational power, and providing
strong data privacy guarantees [13, 19].

The goal of Federated Learning is to train a centralized global model while the training data remains
distributed on a large number of client nodes [13]. In this context, we assume that the central
node can be any machine with reasonable computational power. Training a model on a Federated
Learning setting is usually done as follows. First, the central node shares an initial model (a deep
neural network) with all the distributed edge nodes or workers (henceforth, these terms are used
interchangeably). Next, the workers train their models using their own data (without sharing it with
other workers). Then, the central node receives the updated workers’ models and aggregates them
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Figure 1: Converge (cycles) ratio relative to SIGNSGD (i.e. BB-SIGNSGD %1), measured as how
fast the method achieved an accuracy at least 99% that of the maximum accuracy achieved by BB-
SIGNSGD %1 (0.25 implies a method 4x faster). Size of marker indicates variance in experiments.
Central learning rate ηc = 5e−3.

into a single central model. The central node communicates the new model to the workers, and the
process repeats for multiple communication rounds until it convergences or reaches a required metric.

In practice, updating the central model involves frequently sending from the workers each model
update, which generates bandwidth issues for very large models. In some settings, there may be
strong limitations in the amount of communication allowed per edge device. There is a growing
body of research on gradient compression and quantization to reduce communication costs without
negatively impacting the convergence rate or accuracy [3, 15, 16]. One of the strongest methods
for gradient compression is the federated version of SIGNSGD, with majority voting1 [4, 5]. This
method allows sending 1-bit per gradient component, a 32x gain as compared to a standard 32-bit
floating-point representation.

In this work, we propose an aggregation step based on a Bayesian beta-Bernoulli model. The
proposed Bayesian framework BB-SIGNSGD encompasses 1-bit compressors for a principled and
flexible choice of how to incorporate information from previous communication rounds during central
aggregation. We provide a proof that SIGNSGD is a special case of our framework when particular
choices are taken within it (in Appendix A 2). We present results from extensive experiments in five
different datasets, providing empirical evidence on how variations in a single choice within our frame-
work leads to faster convergence as compared to SIGNSGD, competitive even with uncompressed
communication.

We validate our framework on the following computer vision datasets: CIFAR-10 [17], EMNIST [9]
(Digits, Letters and Balanced versions) and FashionMNIST [27]. The datasets are split, i.i.d., to
form the central and edge nodes’ data. In terms of convergence rate, variations of BB-SIGNSGD
consistently outperform or are leveled with SIGNSGD, with no harm to the model’s accuracy and
sometimes reaching equivalent convergence to uncompressed communication.

Figure 1 shows, for different datasets, the relative convergence ratio of all methods as relative
to SIGNSGD. We have the no compression method, where full 32-bit precision is used during
communication, and then variations of BB-SIGNSGD, where BB-SIGNSGD %1 is equivalent to
SIGNSGD. We can see how variation BB-SIGNSGD %5, for instance, outperforms SIGNSGD on
all datasets, achieving convergence to SIGNSGD’s accuracy around 5x faster and being close to the
convergence on uncompressed communication. Figure 1 is related to Table 4 in Appendix B 3.

1From here on we will refer to majority voting SignSGD simply as SIGNSGD
2Appendices might be separated from this file, but should be available along with it.
3Appendices might be separated from this file, but should be available along with it.
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2 Related Work

Federated Learning Federated Learning is a growing field and most relevant to the work we present
here are fronts such as robustness, convergence and compression for communication costs [13].
The standard aggregation method is FEDAVG [19], albeit with many works proposing different
improvements on it [14, 18, 28], mostly focusing on heterogeneous settings.

There have also been work on global model update, such as [20] the authors present an analysis
of the federated version of adaptive optimizers (Adagrad, Adam, among others), focusing on the
trade-offs between communication efficiency and client data heterogeneity. Another example of
improved update rules at the central node for the global model is [10]. Other interesting improvements
include [25], where the authors propose a method that performs layer-wise matching.

Bayesian Federated Learning The work in [2] formulates Federated Learning as a posterior
inference problem, with their aggregation method FEDPA, a generalization of FEDAVG. This is
similar to our insight of treating aggregation as a posterior inference in a Bayesian way; however,
FEDPA is not focused on high compression scenarios and requires computation of posterior at the
edge nodes.

Other types of Bayesian perspective include, for instance [7], where the authors present a Bayesian
model ensemble method combined with knowledge distillation in a teacher-student setting to arrive at
a global model. Other works in model aggregation, include [29], where the authors propose a Bayesian
non-parametric approach to model matching, with further improvements done in FEDMA [25] through
iterative matching per layer. Like FEDMA, our method has also only a linear dependence on layer
depth - in our case, only in terms of storage (i.e. beta prior parameters – see Section 4) and not
communication. Finally, FEDBE [7] aims to improve aggregation robustness through Bayesian
model ensemble. Similar to our work, FEDBE also strives for robustness in aggregation, but has no
particular focus in high compression scenarios.

SignSGD for Federated Learning Gradient quantization in general has been proposed in Federated
Learning to mitigate communication costs. Most of the work so far has focused on unbiased methods,
such as PQASGD [11], D-PSGD [22], QSGD [3], TERNGRAD [26] and ATOMO [24]. In contrast
to QSGD [3] and CPSGD [1], our method yields 1-bit updates, allowing for 1-bit communication
from central to edge nodes.

In terms of 1-bit compression, one of the first proposals was [21], with a rich theoretical and practical
ideas being developed thereafter. Theoretical and empirical studies have supported the idea that sign-
based compression, despite its biased nature, can converge well, in homogeneous settings [4, 5, 6].
There have also been works studying the heterogeneous settings, with [8] adding noise to improve
convergence, and [12] proposes a parameter estimation approach to improve convergence with a
stochastic version of SIGNSGD that enables one to put theoretical bounds convergence.

3 Background: Federated Learning Formulation

We start by considering a commonplace Federated Learning scenario where we have a central node
coordinating a number of workers (edge nodes), each with their private dataset. The workers jointly
optimize a global model without sharing their private data. This optimization occurs through a
number of cycles (communication rounds), each composed of two steps: edge-side training and
central aggregation. The process starts by all workers sharing the same initial model and, at each
new cycle, the central node syncs back to the workers an updated model. A cycle involves four
main concepts: edge-side training; gradient compression (at the edge and central node); central
aggregation; and edge-side model update.

Edge-side training Each worker starts with an initial global model wi = w̄, which it optimizes
on batches of its private dataset performing SGD for a given number of steps (SGD is used as an
example, but the edge nodes could perform other types of optimization). Denote by wi and Bi the
model and the private dataset at worker i respectively, then we can express edge-side training as
performing SGD for K steps as
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wi ← wi − ηw∇ℓ(wi, b), d ∼ Bi, for k = 1, 2, ...,K (1)

where ηw is the learning step at the edge nodes, ℓ is a loss function and b is a sample (batch) from a
worker’s private dataset. After performing SGD, each worker arrives at a trained model wi.

Gradient compression After training, each worker compresses its gradients prior to sending them
to the central node, where they will be decompressed, aggregated, compressed and sent back to the
edge nodes. In this work we consider "pseudo-gradients" gi ∈ RD, with gi = wi − w̄ defined as
the difference of each worker’s updated model to the initially shared model. We define a gradient
compressor as a pair of functions (c(·), d(·)) for compression and decompression, respectively. Each
worker compresses its pseudo-gradient gi before sending them back to the central node as gci ← c(gi).
Please note that gci will still be a D-dimensional vector (albeit possibly in a different space than the
uncompressed gi). Performing no compression simply means we have c(·) = d(·) being the identity
function.

Central aggregation After receiving the compressed pseudo-gradients gci from each worker i, the
central node first decompresses them as gdi ← d(gci ) and then performs an aggregation step to arrive
at a unique global gradient vector ḡ, which is then re-compressed to be sent back to each worker as
ḡc, A standard approach for aggregation is FEDAVG, where we take the mean of the decompressed
gradients. The complete aggregation and compression step is given by

ḡc ← c

(
1

M

M∑
i=1

d(gci )

)
. (2)

Edge-side model update After each worker receives the global compressed aggregated gradients
ḡc, it decompresses them prior to performing an update

wi ← w̄ − ηcd (ḡ
c) . (3)

Please note that the update is performed using a common central learning rate ηc, which is not
necessarily the same as the edge-side learning rate ηw used for model training (equation 1).

Federated SIGNSGD Here we consider the compressor for federated SignSGD as a pair of
functions (c(·), d(·)), with c : RD → {0, 1}D and

c(g)
def
=

sign(g) + 1

2
, (4)

where we define sign(0) = 1 and sign(·) is applied element-wise on the components of g. The
function d : {0, 1}D → {−1, 1}D is defined as

d(gc)
def
= 2gc − 1. (5)

SIGNSGD compresses each gradient from its (usual) float-point representation down to a single
bit per gradient. This binary representation is then converted into a sign {−1,+1} at the central
node through the d(·) function. The central aggregation of these decompressed sign gradients is
done through FEDAVG, 1

M

∑M
i=1 d(g

c), leading to a mean vector that does not necessarily belong to
{−1,+1}D. The aggregation can be considered a majority voting [5]: it is easy to see that the sign
of the aggregated mean yields the same results as choosing gradients through majority voting across
workers.

4 BB-SIGNSGD

We propose to view SIGNSGD through a Bayesian perspective. More specifically, we provide
a reinterpretation of the SIGNSGD compressor for Federated Learning by assimilating it into a
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beta-Bernoulli probabilistic model. We name our proposed framework BB-SIGNSGD, where we
make use of the same compressor functions, but perform a different aggregation step.

Bayesian beta-Bernoulli Interpretation The central node has a Bayesian beta-Bernoulli model,
where the compressed gradients gci ∈ {0, 1}D, one per each of the M workers, are interpreted to
be M observations of a D-dimensional binary random vector g = [g1, g2, ..., gD], with independent
components gj , each coming from a separate Bernoulli distribution

gj ∼ Bern (gj; θj) (6)

The θ parameter in the Bernoulli distribution represents the bias of each binary gradient component
gj , and each θj is drawn from a separate beta distribution

θj ∼ beta (θj ;αj, βj) . (7)

We then have the Bayesian update for a beta posterior inference over each gradient bias parameter θi

beta (θj) ∝ Bern (gj|θj) beta (θj |αj, βj) (8)

Bayesian central aggregation The Bayesian update runs at every cycle, effectively updating each
beta posterior parameter θj ; using as prior, the posterior from the previous cycle. We also envision
the possibility of not using the previous posterior as prior at any given cycle - we call this "resetting"
the prior. We consider three decisions to be made at the central node in order to choose:

1. The prior values to use for αj , βj (at each cycle)

2. θj , from the updated beta posterior (e.g. sampling, mean, mode...)

3. gj , from a Bernoulli distribution with the chosen θj (e.g. sampling, mean, mode...)

After making these three choices, we arrive at gradient components gj . Please note that these are
not necessarily binary values. For instance, if our third choice is the expected value of gj, it is not
necessarily true that E[gj; θj ] ∈ {0, 1}, albeit it will be in the [0, 1] range. Therefore, we first apply
d(·) to get each gradient component gj in the [−1, 1] range, and then apply c(·) to compress it back to
a binary value. Finally, please also note that in this beta-Bernoulli framework, there is no aggregation
(such as FEDAVG) being applied across workers; the Bayesian model already yields a single gradient
ḡj per component. Formally, ḡcj = c(d(gj)).

We provide a naming scheme BB-SIGNSGD %* where we fix choices (2) and (3) to be: (2) θj as the
mode of the beta posterior; and (3) gj = E[gj; θj ]. We then vary the cycle at which we effectively
"reset" the prior back to uniform. BB-SIGNSGD %5 means resetting the prior every 5 cycles; and
BB-SIGNSGD %Inf means we never reset the prior.

SIGNSGD There are three particular choices we make on the BB-SIGNSGD aggregation that leads
us to SIGNSGD. These are (1) a uniform prior αj = βj = 1 at every cycle; (2) θj as the mode of
the beta posterior; and (3) gj = E[gj; θj ] as the expected value of the updated Bernoulli distribution.
We name this instance of our method BB-SIGNSGD %1. We provide a proof of the equivalence of
BB-SIGNSGD %1 and SIGNSGD in Appendix A 4.

5 Experiments

In this paper, we focus on exploring the first decision during central aggregation, i.e., the choice
of prior parameters αi, βi for the beta distribution at each cycle. Particularly, we investigate how a
"resetting" of the prior to uniform at different cycles affects the convergence rate. The suffix %n
indicates that we are resetting the prior every n cycle(s); thus %Inf means that we are never resetting
the prior. All BB-SIGNSGD variations are making the same second and third choices: (2) θj as the

4Appendices might be separated from this file, but should be available along with it.
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Figure 2: FashionMNIST, ηc = 2e−3. It
presents stable learning, however conver-
gence is twice as long.

Figure 3: FashionMNIST, ηc = 5e−3.
It shows that BB-SIGNSGD with var-
ious parameter choices overperformed
SignSGD (blue line) in terms of convergence.

mode of the beta posterior; and (3) gj = E[gj; θj ] as the expected value of the updated Bernoulli
distribution. Finally, we also investigate different values for the central learning rate ηc.

We validate our framework on the following computer vision datasets: CIFAR-10 [17], EMNIST [9]
and Fashion-MNIST [27]. The datasets are split, i.i.d., to form the workers’ training data (90%) and
the central node validation data (10%). All results are reported relative to the central node’s validation
data. We perform experiments on our own developed simulator built with a gradient compression
experimentation focus. All experiments were done with a single central node, 10 edge nodes and 100
max communication cycles. Training at the edge nodes was done with a batch size of 64 for 1 epoch
using the Adam optimizer with default learning rate of ηw = 1e−3. Finally, we focus on convergence
in this section since different methods achieved very similar maximum accuracy after 100 cycles -
tables for accuracy across all datasets, methods and learning rates can be found in Appendix B 5.

Figures 2 and 3 show the accuracy evolution for different methods for the FashionMNIST dataset.
Figure 2 shows the evolution for a central learning rate ηc = 2e−3; and Figure 3 for ηc = 5e−3.
We can see how a smaller central learning rate stabilizes convergence for all methods; nonetheless,
even with a larger learning rate of ηc = 5e−3, BB-SIGNSGD variations remain relatively stable and
achieve faster convergence than BB-SIGNSGD %1. In Appendix B 6, we show convergence and
accuracy tables as well as figures for all the different datasets and learning rate variations.

Tables 1 and 2 show the relative convergence of all methods to BB-SIGNSGD %1 (i.e. SIGNSGD).
To calculate this, we first find the maximum accuracy achieved by BB-SIGNSGD %1 across all
100 cycles. Then, for any particular method’s accuracy evolution, we report the cycle at which it
achieves at least 99% of BB-SIGNSGD %1’s maximum accuracy. Please note that, for the case of
BB-SIGNSGD %1 itself, we report the cycle at which it achieves at least 99% of its own maximum
accuracy. We report the mean and standard deviation for three experiments running for three different
starting seeds.

In Table 1, we show the convergence for all methods and datasets, with the central learning rate
set at ηc = 2e−3. We use this learning for a fair comparison, since this is the one with which BB-
SIGNSGD %1 performed the best. Please note how BB-SIGNSGD %5 surpasses BB-SIGNSGD on
all datasets but EMNIST-Digits, on which it achieves a comparable convergence.

Table 2 show convergence of all methods for a particular dataset FashionMNIST, but now varying the
central learning rate. We can see from the results how BB-SIGNSGD %5 levels with or surpasses
BB-SIGNSGD %1 with all learning rates. Particularly, we note how BB-SIGNSGD %5 achieves a
lower convergence cycle (10± 1, with ηc = 5e−3) as compared to BB-SIGNSGD %1 using its best
learning rate (14± 2, with ηc = 2e−3).

From both Tables 1 and 2, we can see how even for BB-SIGNSGD %1’s best learning rate of
ηc = 2e−3, we find other BB-SIGNSGD variations that performed equivalently or better (with
special attention to BB-SIGNSGD %5). Furthermore, as we increase the central learning rate, BB-
SIGNSGD %1 destabilizes its convergence, and other Bayesian variations maintain stability (again,

5Appendices might be separated from this file, but should be available along with it.
6Appendices might be separated from this file, but should be available along with it.
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Table 1: Convergence relative to BB-SIGNSGD %1 (i.e. SIGNSGD), with central learning rate
ηc = 2e−3. We report the cycle at which the given method achieves at least 99% of BB-SIGNSGD
%1’s maximum accuracy. Values are mean and standard deviation for three different starting seeds.

BB-SIGNSGD

Dataset No compr. %1 %2 %5 %10 %Inf

FashionMNIST 12± 1 14± 2 16± 2 13± 2 17± 2 24± 2
CIFAR10 11± 1 17± 2 13± 0 13± 1 14± 0 18± 2
EMNIST-Digits 4± 0 5± 1 5± 1 6± 0 9± 0 10± 1
EMNIST-Letters 11± 0 15± 2 15± 2 13± 1 15± 2 31± 4
EMNIST-Balanced 11± 1 17± 2 16± 2 15± 1 17± 1 36± 6

Table 2: Convergence relative to BB-SIGNSGD %1 (i.e. SIGNSGD), with varying central learning
rate for FashionMNIST. We report the cycle at which the given method achieves at least 99% of
BB-SIGNSGD %1’s maximum accuracy. Values are mean and standard deviation for three different
starting seeds.

BB-SIGNSGD

ηc No compr. %1 %2 %5 %10 %Inf

1e−3 13± 0 22± 2 23± 2 22± 2 24± 0 48± 1
2e−3 12± 1 14± 2 16± 2 13± 2 17± 2 24± 2
5e−3 7± 0 57± 2 19± 1 10± 1 13± 0 10± 2

with special attention to BB-SIGNSGD %5). This is true for other datasets, as shown in Appendix B
7.

6 Discussion and Conclusion

In this work we focus on scenarios with limited communication bandwidth, where gradient compressor
quantization provides a feasible solution to the Federated Learning problem. We propose a novel
Bayesian framework for 1-bit compression, named BB-SIGNSGD, where we treat central aggregation
as an inference problem, with model weights from edge nodes taking the role of observations. More
concretely, we model each gradient as a Bernoulli random variable, and perform posterior inference
on a beta-Bernoulli model to arrive at aggregated gradients. Furthermore, we prove that SignSGD is
a special case of BB-SIGNSGD when standard choices are taken within the framework: 1) a uniform
prior reset at every cycle; 2) mode of the beta posterior; and 3) expected value of the gradient. Our
framework incurs only a minor linear cost of storing beta prior parameters (two real numbers per
model weight) - and no extra cost for BB-SIGNSGD %1, since the prior is reset at every cycle.

We validate our framework on five computer vision datasets. In our experiments we vary two aspects:
number of cycles before resetting the beta prior; and the central learning rate. We find that BB-
SignSGD with higher reset cycles outperforms SIGNSGD, achieving the same accuracy at much
lower cycles, and in some cases being competitive with no gradient compression. The key insight is
that delayed resetting of the prior within our framework allows for increased learning rate without
disrupting model convergence and thus allowing for faster convergence.
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