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Abstract

Federated Learning (FL) is an increasingly popular machine learning paradigm in
which multiple nodes try to collaboratively learn under privacy, communication and
multiple heterogeneity constraints. A persistent problem in federated learning is
that it is not clear what the optimization objective should be: the standard average
risk minimization of supervised learning is inadequate in handling several major
constraints specific to federated learning, such as communication adaptivity and
personalization control. We identify several key desiderata in frameworks for
federated learning and introduce a new framework, FLIX, that takes into account
the unique challenges brought by federated learning. FLIX has a standard finite-
sum form, which enables practitioners to tap into the immense wealth of existing
(potentially non-local) methods for distributed optimization. Through a smart
initialization that does not require any communication, FLIX does not require
the use of local steps but is still provably capable of performing dissimilarity
regularization on par with local methods. We give several algorithms for solving
the FLIX formulation efficiently under communication constraints. Finally, we
corroborate our theoretical results with extensive experimentation.

1 Introduction

Federated Learning (FL) aims to enable machine learning in the decentralized setting while respecting
data privacy. Application domains of federated learning include healthcare, learning language models
for virtual keyboards, and speech recognition (Kairouz et al., 2019). The promise of federated learning
is that by participating in a distributed training process, clients can learn better machine learning
models than they can using only their own data. The main cost in using federated learning over local
training lies in the network bandwidth used for the distributed training process. Hence, federated
learning must be flexible enough to provide a benefit to users without a prohibitive communication
cost. The standard formulation of FL is to cast it as an optimization problem of the form

min
x∈Rd

[
f(x)

def
= 1

n

n∑
i=1

fi(x)

]
, (ERM)

where fi is the loss function on client i. Thus, the goal of classical FL is for the n clients to collab-
oratively learn a single model, x∗ = arg min f , to be deployed on all clients. Recent development
shows that using a single model for all clients can be severely detrimental to individual performance
on many clients (Yu et al., 2020), defeating the purpose of joining distributed training. Furthermore,
(ERM) offers no clear tunable knobs that can accommodate constraints on the network bandwidth.
Can we find a formulation for federated learning that is flexible enough to accommodate the needs of
federated learning, yet also solvable using standard methods?

* The full paper is available at https://arxiv.org/pdf/2111.11556.pdf
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(a) 100 workers created out of two clients’ data (b) 50 workers with distinct data distributions

Figure 1: Test accuracy of FLIX model for different personalization parameter values, FOMAML
and Reptile. αi = α is set to the value indicated on horizontal axis. FOMAML and Reptile are
independent from the personalization parameter α. Plots correspond to different data splittings.

1.1 Key properties of the FLIX framework

Our main contribution is FLIX, a novel and flexible formulation for federated learning: define αi > 0

to be the personalization parameter for node i, and let xi
def
= minx∈Rd fi(x) be the local solution to

the i-th objective– note that xi can be found by solely running a local optimizer, and hence computing
it requires no communication at all. The FLIX problem is

min
x∈Rd

f̃(x)
def
= 1

n

n∑
i=1

fi(αix+ (1− αi)xi). (FLIX)

Once we find a solution x∗ of sufficient quality for (FLIX), we deploy Ti(x∗) = αix∗ + (1− αi)xi
on node i as its final personalized model. We now enumerate some of the key properties of (FLIX):

• Efficiently solvable as a finite-sum problem. (FLIX) preserves the standard finite-sum formu-
lation of empirical risk minimization. Moreover, it preserves problem structure: we show (in
Section 3) that when the fi are smooth (and/or convex), f̃ is also smooth (resp. convex).

• Adaptive to communication constraints. Communication efficiency is an important concern in
federated learning, as often bandwidth is valuable and limited (Kairouz et al., 2019; Konečný et al.,
2016; Li et al., 2019). Computing xi, a precondition to solving (FLIX), requires no communication
at all, and can be done purely locally on node i. If αi = 0, then no communication at all is needed
to compute the personalized model Ti(x∗). By varying αi between 0 and 1, we can control
the amount of communication needed to compute Ti(x∗). We show (in Section 3) that given a
communication budget of R steps, we can find parameters αi that allows us to solve (FLIX) in no
more than R communication steps.

• Adaptivity to personalization. Our end-goal in federated learning is to generalize well on
each client: this means that the solution deployed on node i should be tailored to its local data
distribution, which may differ from the data distributions on other nodes. In FLIX, varying αi
enables us to amplify or reduce the effect of other objectives on the solution deployed on node i.
In situations where the data on all of the nodes is sufficiently heterogeneous, we set αi to be small
and the effect of other data on node i will be neglibile. On the other hand, when the data on the
different nodes is related we may set αi to be closer to 1. We observe a benefit to varying α in this
manner in practice: Figure 1 shows the effect of varying the αi on real data (see Section 4 for the
details and for other experiments).

FLIX fills a gap that is unsatisfied by existing methods. To the best of our knowledge, there is
no other method for federated learning that is efficiently solvable via standard algorithms and also
adaptive to communication and personalization constraints, and indeed both constraints are important
in practice (Li et al., 2020). We believe the key properties we enumerate can also serve as natural
desiderata in the development of new formulations and methods for federated learning.
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1.2 Related work

Personalization has garnered significant recent interest in federated learning as personalized models
often perform well in practice compared to non-personalized models (Jiang et al., 2019; Yu et al.,
2020). FLIX is a model mixture method: the personalized solution is a mixture of a global model and
a local model. In recent work, Deng et al. (2020) and Mansour et al. (2020) propose model mixture
methods and prove their statistical benefits, while Zec et al. (2021) introduce a similar formulation
based on the mixture of experts framework. Unfortunately, we show in the supplementary material
that, from the perspective of optimization and without additional data, the formulations in all three
works are trivially minimized at the local minimizers x1, . . . , xn. An alternative to model mixing is
mixing in function space, where we optimize a mixture of objectives rather than a model mixture.
This mixture is often constructed to control model variance: examples of this approach can be found
in (Dinh et al., 2021a;b; Hanzely and Richtárik, 2020; Huang et al., 2021). In FLIX, we take the
model mixture approach as it allows us to use pretraining to better solve the problem while still
regularizing model variance (see Section 2.1). A parallel line of work applies meta-learning methods
like MAML to federated learning (Fallah et al., 2020a; Jiang et al., 2019): in Section 2.2 we motivate
FLIX by taking MAML as our starting point. Chen et al. (2021) discuss the statistical limits of
personalization and show that either solving empirical risk minimization or local training is optimal,
depending on certain problem parameters; However, as of yet there is no single optimal adaptive
algorithm (from the statistical perspective). There are several other techniques in federated learning
that can be combined with our approach for better results, such as clustering (Sattler et al., 2020) or
robust optimization (Reisizadeh et al., 2020).

2 The FLIX formulation

In this section we reintroduce and motivate the FLIX formulation in detail. We define the FLIX
objective as

f̃(x;α1, . . . , αn, x1, . . . , xn)
def
= 1

n

n∑
i=1

fi(αix+ (1− αi)xi), (1)

where αi ∈ (0, 1) is the personalization coefficient for node i and xi is the minimizer of fi, for all
i = 1, 2, . . . , n. We will use f̃(x) to refer to the objective in (1) when the αi and xi are clear from
the context. The FLIX problem is then

minx∈Rd

[
f̃(x) = 1

n

n∑
i=1

fi(αix+ (1− αi)xi)
]
. (2)

Let α = [α1, . . . , αn] be the vector of the personalization coefficients. If x∗ = x∗(α) is a solution
of (2), we call Ti(x;αi, xi) = αix∗ + (1− αi)xi the deployed solution on node i. Like with f̃ , we
will refer to the deployed solution on node i as Ti(x) when xi and αi are clear from the context.

2.1 Motivation 1: from Local GD to FLIX

The most popular algorithm for solving federated learning problems is the Federated Averaging
algorithm (Kairouz et al., 2019), also known as Local (Stochastic) Gradient Descent (Local GD/SGD).
Local GD alternates steps of local computation on each node with steps of communication and
aggregation. More concretely, the Local GD update is:

xit+1 =

{
xit − γ∇fi(xit) if t mod H 6= 0
1
n

∑n
i=1

[
xit − γ∇fi(xit)

]
if t mod H = 0

, (3)

where H is the number of local steps. Early papers on federated learning (such as e.g. (Konečný et al.,
2016)) motivated local methods as communication-efficient ways of solving (ERM), but subsequent
theoretical development reveals that local methods are, in fact, quite bad solvers for (ERM) whenever
there is significant statistical heterogeneity among the clients (Woodworth et al., 2020). Moreover,
Pathak and Wainwright (2020) show that for the linear least-squares problem, Local GD converges to
a different point than the minimizer of (ERM). More generally, the fixed points of Algorithm (3) can
be very different from the minimizer of (ERM) whenever H > 1 (Malinovskiy et al., 2020). Hanzely
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and Richtárik (2020) show that a mild variant of Local GD can be interpreted as SGD applied on the
nd-dimensional regularized objective fλ defined by

fλ(y1, y2, . . . , yn)
def
=

[
1
n

n∑
i=1

fi(yi) + λ
2n

n∑
i=1

‖yi − ȳ‖2
]
, (4)

where ȳ = 1
n

∑n
i=1 yi is the counterpart of x in (ERM), and where λ is a regularization parameter

determined according to the number of local steps. Objective fλ is the summation of two terms:
the first asks that each node i finds a solution yi that minimizes its local objective well, while the
regularizer ψ(y1, . . . , yn) = 1

2n

∑n
i=1 ‖yi − ȳ‖

2 forces the solutions y1, y2, . . . , yn to be close to
their average ȳ. Hence, Local GD incentivizes finding personalized solutions y1, y2, . . . , yn that
have small population variance. Hanzely and Richtárik (2020) note that as the λ parameter varies
between 0 and∞, the solutions found by Local GD interpolate between the pure local optimal models
(i.e. xi = argminx fi(x)) and the solution of the global problem x∗ (the minimizer of (ERM)).
We observe that the solutions y1, . . . , yn found by Local GD are an implicit mixture of the local
minimizers x1, . . . , xn and the global empirical risk minimizer x∗. Rather than seeking an implicit
mixture of the local and global optimal models, we instead propose to find an explicit mixture of the
local optimal models and a global model: given any global model x (not necessarily the empirical
risk minimizer), we choose coefficients α1, α2, . . . , αn (all between 0 and 1) and then deploy on
node i the mixture

Ti(x) = αix+ (1− αi)xi, (5)
we may then choose x as the best such global model by explicitly solving the optimization prob-

lem min
x∈Rd

1
n

n∑
i=1

fi (αix+ (1− αi)xi), and this is exactly the FLIX formulation. Observe that

coefficients α1, α2, . . . , αn should regularize the population variance of the deployed solutions
T1(x), T2(x), . . . , Tn(x), as in local methods. We show this rigorously for equal αi in Proposition 3.
Our development thus leads us to a natural framework that captures the strength of local methods
while also satisfying the desiderata specified in Section 1.1.

2.2 Motivation 2: from model-agnostic meta-learning to FLIX

We now motivate FLIX differently by starting with personalization via fine-tuning. The ordinary
formulation of the federated learning problem (ERM) asks for a single global model to be used on
all clients. If the clients are sufficiently heterogeneous, a single model may perform badly on many
of them (Jiang et al., 2019). Personalizing a global model to each of the users’ custom data is often
beneficial in practice; For example, Wang et al. (2019) study the benefits of personalizing language
models for a virtual keyboard application used by tens of millions of users. They observe that a
sizeable fraction of the users benefit from personalization. Personalization is often done in two steps:

Step I: initial model training. Find a “good” global model xglobal.
Step II: fine-tuning. Personalize the global model xglobal on each client to get the personalized
local models xi.

Methods that fit this framework are known as finite-tuning approaches: they include the model-
agnostic meta-learning (MAML) family of methods (Finn et al., 2017). In addition to its practical
popularity, recent theoretical investigations reveal that fine-tuning approaches, such as MAML, are
also benefical from a statistical perspective (Chua et al., 2021; Fallah et al., 2021). In MAML, we find
xglobal by optimizing for the loss after a single step of gradient descent, i.e. the MAML objective is

Find xglobal ∈ argmin
x∈Rd

1
n

n∑
i=1

fi(x− γ∇fi(x)), (6)

where γ is a given stepsize. Once xglobal is found, we may then fine-tune it by running gradient
descent for a number of steps on each node i locally using its own objective fi (Finn et al., 2017).
To gain further insight into what fine-tuning is doing, we now consider the case when each fi is a
quadratic function. Because this problem is amenable to analysis, several authors have used it to
study the theoretical properties of MAML (Charles and Konečný, 2021; Collins et al., 2020; Gao and
Sener, 2020), and we follow in their footsteps. Assume that each fi is a quadratic function, suppose
that we have some initial global model x0, and we fine-tune it by running gradient descent for H
steps on node i: the next proposition shows the final iterate is a matrix-weighted average of the initial
solution and the optimal local solution:

4



Proposition 1. Suppose that we run gradient descent for H steps on the quadratic objective fi =
1
2x

TAix− bTi x+ c starting from x0 with stepsize γ > 0. Suppose that the stepsize satisfies γ ≤ 1
Li

,
where Li = λmax(Ai). Then the final iterate xHi can be written as

xHi =
(
I − JHi

)
xi + JHi x

0,

where xi minimizes fi and Ji ∈ Rd×d is a matrix with maximum eigenvalue smaller than 1, i.e.
λmax(J) < 1.

The proof of Proposition 1 and all subsequent proofs are relegated to the supplementary. Plugging
the result of Proposition 1 into Equation (6), observe that in MAML we find the initial model x0 by

solving the problem min
x∈Rd

1
n

n∑
i=1

fi((I − Ji)xi + Jix). Hence, MAML is optimizing for a specific

weighted average of the initial model x0 and the local solutions x1, x2, . . . , xn. We thus propose
to dispense with the specific matrix Ji and instead optimize an average weighted with an arbitrary

constant αi: min
x∈Rd

1
n

n∑
i=1

fi(αix + (1− αi)xi), and this is exactly the FLIX formulation. Observe

that by properly normalizing or whitening the data and tuning αi we may accomplish a similar effect
to multiplying by JHi for any H . This gives FLIX a new interpretation as an approximate generalized
MAML, where we optimize the global model for performance after potentially many gradient descent
steps rather than just a single step.

3 Theory and algorithms

In this section we aim to develop algorithms to solve (FLIX) in a communication-efficient manner.
Before discussing concrete algorithms, we study a few algorithm-independent properties of (FLIX)
that will come in handy for understanding the formulation and proving convergence bounds. The
following proposition shows that the formulation preserves smoothness and convexity. This is in
contrast, for example, to MAML, where the objective may be nonsmooth (Fallah et al., 2020b).
Proposition 2. Suppose that each objective fi is Li-smooth. That is, for any x, y ∈ Rd we have
‖∇fi(x)−∇fi(y)‖ ≤ Li ‖x− y‖. Then the FLIX objective f̃ defined in (1) is Lα-smooth for

Lα
def
= 1

n

∑n
i=1 α

2
iLi. If each fi is convex, then f̃ is also convex. If each fi is µi-strongly convex,

then f̃ is µα strongly convex for µα
def
= 1

n

∑n
i=1 α

2
iµi.

Our next result offers some insight into the variance-regularizing effect of the αi: in particular, when
all the αi are equal, increasing α in (FLIX) directly decreases the variance of the deployed local
models from their mean. As discussed in Section 2.1, this is a key property of local descent methods
that the FLIX formulation captures.
Proposition 3. Suppose that α1 = α2 = . . . = αn = β in the FLIX formulation (FLIX). Let
T1(x), T2(x), . . . , Tn(x) be the deployed models defined in (5). If y1, . . . , yn are vectors in Rd and ȳ

is their mean, we define V (y1, . . . , yn) as the population variance V (y1, . . . , yn)
def
= 1

n

n∑
i=1

‖yi − ȳ‖2.

Then, V (T1(x), T2(x), . . . , Tn(x)) = (1− β)
2
V (x1, x2, . . . , xn).

One-shot learning is a learning paradigm where we may use only a single round of communication
to solve the federated learning problem (Guha et al., 2019; Salehkaleybar et al., 2019). When
the personalization parameters are small enough, we can provably solve the FLIX problem with
a single round of communication by computing a certain weighted average of the local solutions
x1, x2, . . . , xn.

Theorem 1. Suppose that each objective fi is Li-smooth, let L̂
def
= 1

n

∑n
i=1 Li. Given the pure local

models x1, x2, . . . , xn, define the weighted average xavg def
=

n∑
i=1

wixi, wi
def
=

α2
iLi
nLα

, Lα
def
= 1

n

n∑
i=1

α2
iLi.

We further define the constants D
def
= max

i,j=1,...,n,i6=j
‖xi − xj‖ , and, V

def
=

n∑
i=1

wi‖xi − xavg‖2. Fix

any ε > 0. Assume that either maxi=1,...,n αi ≤
√

2ε/
√
L̂D, or αi = β for all i and β ≤

√
2ε/
√
L̂D. Then xavg is an ε-approximate minimizer of (FLIX).
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For αi larger than this, we need more communication rounds. In the next subsection, we describe
how distributed gradient descent can be used to solve the problem.

3.1 Distributed gradient descent

The simplest approach to solving (FLIX) is via distributed gradient descent (DGD): given the local
models x1, x2, . . . , xn (precomputed before starting the process) and an initial global model x0, we

run the update xk+1 = xk − γ
n

n∑
i=1

αi∇fi
(
αix

k + (1− αi)xi
)
. The next theorem shows that under

smoothness and strong convexity, DGD converges linearly to the (FLIX) solution.

Theorem 2. Suppose that each fi in (FLIX) is Li-smooth and µi-strongly convex. Define xavg, Lα,
L̂, V and D as in Theorem 1. Suppose that we run DGD for K iterations starting from x0 = xavg.
Then the following hold:

i) If the αi are allowed to be arbitrary, then for αmax
def
= maxi=1,...,n αi we have

f̃(xk) − min
x∈Rd

f̃(x) ≤
(

1− µα
Lα

)K
α2

maxL̂D
2 .

ii) Let µ̂
def
= 1

n

∑n
i=1 µi. If αi = β for all i, then

f̃(xk)−minx∈Rd f̃(x) ≤
(

1− µ̂

L̂

)K
β2L̂V

2 . (7)

There are four ways of making the right hand side in (7) (the communication complexity) small:

• Communicate more. Increase the number of communications K.

• Homogeneous data. The variance V =
∑n
i=1 wi‖xi − xavg‖2 can be seen as a measure of data

heterogeneity. More homogeneous data means smaller V , which leads to better performance.

• Train simpler models. Focusing attention on models with smaller L̂ (adjust model design), or
larger µ̂ (e.g., add more regularization).

• Put more weight on local models. If we prefer local models to the global model, then αi is small,
and hence fewer communications are needed to achieve any given accuracy.

Armed with Theorem 2, we make good on our promise in Section 1.1 and show that FLIX can be
solved using any communication budget. Looking at (7) we see that for any fixed ε > 0 we have

f̃(xk)−minx∈Rd f̃(x) ≤ ε as long as β ≤ Aqk, where A =

√
2ε/(L̂V ) and q = 1/

√
1− µ̂

L̂
.

Putting this together leads to the following observations:

• If β = 0, the problem can be solved with 0 communications (i.e. , each device i independently
computes the pure local model xi).

• If 0 < β ≤ A, the problem can be solved with 1 communication (i.e., compute xavg). This follows
from Theorem 1, and also from the more general result Theorem 2 by setting K = 0.

• If A < β ≤ Aq, the problem can be solved with 2 communications (1 communication to compute
x0 = xavg , followed by one iteration of distributed GD).

• If Aqk−1 < β ≤ Aqk, the problem can be solved with k + 1 communications (1 communication
to compute x0 = xavg , followed by K iterations of distributed gradient descent).

• If β = 1, we need 1 communication to compute x0 = xavg , followed by k ≥ L̄
µ̄ log L̄V

2ε iterations
of distributed gradient descent. This is recovers the standard communication complexity of gradient
descent needed to find the optimal solution of the average risk minimization problem (ERM).

In the supplementary, we develop other algorithms for solving (FLIX) such as distributed gradient
descent with compression (Alistarh et al., 2017) and DIANA (Mishchenko et al., 2019). We note that
because (FLIX) has a standard finite-sum form, many more algorithms can be used to solve it, e.g.
accelerated minibatch SGD (Cotter et al., 2011) or SARAH (Nguyen et al., 2017).
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Figure 2: Average MSE vs. personalization parameter α.

4 Experiments

Generalization experiment 1: Fitting Sine Functions. Following Finn et al. (2017) and Zhou
et al. (2019), we show the generalization advantages of FLIX on the following regression problem.
We define i-th client’s function fi(x) = ai sin (x+ bi), where amplitude ai and phase bi lie in
the intervals [0.1, 0.5] and [0, 2π], respectively. For each client, we fix ai and bi and sample 50
points uniformly at random from the interval [−5.0, 5.0]. We measure regression fit in terms of
mean squared error (MSE) loss. To train a model each client adopts a neural net with 2 hidden
layers of size 40 with tanh activation. Further technical details are deferred to the appendix. For the
experiment, we first sample 2 pairs {ai, bi} and each of 200 clients is assigned one pair, we investigate
different proportion– (30, 170), (50, 150), (70, 130), (90, 110). We then train our FLIX formulation
with αi = α = 0.1, 0.2, . . . , 1. For testing for each client generates a new dataset of size 2000.
Figure 2 shows average MSE over clients against different values of α for different proportions. As
this figure indicates, optimal α for which test average MSE is minimal can dramatically outperform
the edge cases of either global model for all tasks or personalized model trained only on the local
dataset.

Generalization experiment 2: Comparison to FOMAML and Reptile. Inspired by Reddi et al.
(2021), we conduct a similar experiment to compare generalization capabilities, i.e., test accuracy,
of FLIX and its two baselines FOMAML (Finn et al., 2017), and Reptile (Nichol et al., 2018). For
the first experiment (see Figure 1a), we take 500 train data points of two clients (with client ids
‘00000267’ and ‘00000459’) from the Stack Overflow dataset (TensorFlow Developers, 2021) and
divide them among 100 workers so that there are 50 workers with 10 train data points from the first
client and another 50 with 10 data points from the second client. For the second experiment (see
Figure 1b), a worker gets 90 train data points from a distinct client. For both experiments, each
objective component fi is a cross-entropy loss for multi-class logistic regression. Further technical
details and the hyperparameters tuning for a fair comparison can be found in the supplementary. In
the test phase, for each client, we used a hold-out testing dataset of size 300 (the same dataset has
been used for workers related to the same client in the first experiment). It can be observed from
Figure 1a, that for wide range of αi, αi ∈ {0.2, 0.4, 0.6, 0.8} FLIX exhibits a better generalization
than its classical meta-learning competitors–FOMAML and Reptile, and it can lead to improvement
of up to 11% in recall@5. Figure 1b shows that in the more real-world scenario FLIX outperforms
FOMAML and Reptile while showing its best test accuracy in non-edge α.
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