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Abstract
Federated Averaging (FEDAVG), also known as Local SGD, is one of the most pop-
ular algorithms in Federated Learning (FL). Despite its simplicity and popularity,
the convergence rate of FEDAVG has thus far been undetermined. Even under the
simplest assumptions (convex, smooth, homogeneous, and bounded covariance),
the best known upper and lower bounds do not match, and it is not clear whether
the existing analysis captures the capacity of the algorithm. In this work, we first
resolve this question by providing a lower bound for FEDAVG that matches the
existing upper bound, which shows the existing FEDAVG upper bound analysis
is not improvable. Additionally, we establish a lower bound in a heterogeneous
setting that nearly matches the existing upper bound. While our lower bounds
show the limitations of FEDAVG, under an additional assumption of third-order
smoothness, we prove more optimistic state-of-the-art convergence results in both
convex and non-convex settings. Our analysis stems from a notion we call iterate
bias, which is defined by the deviation of the expectation of the SGD trajectory
from the noiseless gradient descent trajectory with the same initialization. We
prove novel sharp bounds on this quantity, and show intuitively how to analyze this
quantity from a Stochastic Differential Equation (SDE) perspective.

1 Introduction

Federated Learning (FL) is an emerging distributed learning paradigm in which a massive number of
clients collaboratively participate in the training process without disclosing their private local data to
the public [Konecny et al., 2015]. Typically, federated learning is orchestrated by a central server who
oversees the clients, e.g. mobile devices or a group of organizations. The training process combines
local training of a model at the clients with infrequent aggregation of the locally trained models at the
central server.

Reflecting the goal of minimizing a loss function aggregated across clients, we consider the distributed
optimization problem minF (x) :=

1
M

P
M

m=1 Fm(x), where each client m 2 [M ] holds a local
objective Fm realized by its local data distribution Dm, namely Fm(x) := E⇠⇠Dm

f(x; ⇠). Federated
Learning is heterogeneous by design as Dm can vary across clients. In the special case when Dm ⌘ D
for all clients m, the problem is called homogeneous.

Federated Averaging (FEDAVG, McMahan et al. 2017), also known as Local SGD (Stich 2019), is
one of the most popular algorithms applied in Federated Learning. In its simplest form, FEDAVG
proceeds in R communication rounds, where at the beginning of each round, a central server sends
the current iterate to each of the M clients. Each client then locally takes K steps of SGD, and then
returns its final iterate to the central server. The central server averages these iterates to obtain the
first iterate of the next round. We state the FEDAVG algorithm formally in Algorithm 1.
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Table 1: Convergence Rates of FEDAVG. Some lower order terms as R ! 1 omitted. H:
smoothness, R: number of rounds, K: local iterations per round, M : number of clients, �: noise,
D : kx(0,0) � x?k. The lower and upper bound use a slightly different metric of heterogeneity (⇣ and
⇣⇤), see Remark 3.2 for details. We bold the terms where our analysis improves upon previous work.
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Algorithm 1 Federated Averaging (FEDAVG)

1: procedure FEDAVG (x(0,0), ⌘)
2: for r = 0, . . . , R� 1 do
3: on client for m 2 [M ] in parallel do
4: x(r,0)

m  x(r,0) B broadcast current iterate
5: for k = 0, . . . ,K � 1 do
6: ⇠(r,k)m ⇠ Dm

7: g(r,k)
m  rf(x(r,k)

m ; ⇠(r,k)m )

8: x(r,k+1)
m  x(r,k)

m � ⌘ · g(r,k)
m B client update

x(r+1,0)  1
M

P
M

m=1 x
(r,K)
m B server averaging

While the FEDAVG algorithm is popular in practice, a thorough theoretical understanding of FEDAVG
has not been established. Even under the simplest setting (convex, smooth, homogeneous and
bounded covariance, see Assumption 1), the state-of-the-art upper bounds for FEDAVG due to Khaled
et al. [2020] and Woodworth et al. [2020b] do not match the state-of-the-art lower bound due to
Woodworth et al. [2020b], see Table 1. This suggests that at least one side of the analysis is not sharp.
Therefore a fundamental question remains:

Does the current convergence analysis of FEDAVG fully capture the capacity of the algorithm?

Our first contribution is to answer this question definitively under the standard smoothness and
convexity assumptions. We establish a sharp lower bound for FEDAVG that matches the existing
upper bound (Theorem 3.1), showing that the existing FEDAVG analysis is not improvable. Moreover,
we establish a stronger lower bound in the heterogeneous setting, Theorem 3.3, which suggests the
best known heterogeneous upper bound analysis [Khaled et al., 2020, Woodworth et al., 2020a] is
also (almost)3 not improvable.

Our proofs highlight exactly what can go wrong in FEDAVG, yielding these slow convergence rates.
Specifically, our lower bound analysis stems from a notion we call iterate bias, which is defined by
the deviation of the expectation of the SGD trajectory from the (noiseless) gradient descent trajectory
with the same initialization (see Definition 2.1 for details). We show that even for convex and smooth
objectives, the mean of SGD initialized at the optimum can drift away from the optimum at the
rate of ⇥(⌘2k

3
2 ) after k steps,4 for sufficiently small learning rate ⌘. We depict this phenomenon in

Fig. 1.5The iterate bias thus quantifies the fundamental difficulty encountered by FEDAVG:

3Up to a minor variation of the definition of heterogeneity measure, see Table 1.
4This rate is also sharp according to our matching upper and lower bounds, see Theorems 2.2 and 2.3 for

details.
5Code see https://github.com/hongliny/Sharp-Bounds-for-FedAvg-and-Continuous-Perspective.
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Figure 1: Illustration of the iterate bias of SGD. Consider the objective F (x) =

⇢
x2 x � 0

1
10x

2 x < 0
as

shown in (a), and f(x; ⇠) := ⇠x+ F (x) where ⇠ ⇠ N (0, 0.01). We initialize the SGD at optimum
x?

= 0, and run 1024 steps of SGD with step size 10
�2. We repeat this random process for 65536

times, and estimate the density function after 128, 256, 512 and 1024 steps. Observe that the density
function and the average gradually move to the left (away from the optimum, where the curvature is
smaller). This figure explains the intrinsic difficulty for FEDAVG to handle objective with drastic
Hessian change.

Even with infinite number of homogeneous clients, FEDAVG can drift away from the optimum even if
initialized at the optimum.

Indeed, we show in Section B.2 that the sharp lower bound of SGD iterate bias leads directly to our
sharp lower bound of FEDAVG convergence rate.

The discouraging lower bound of FEDAVG under a standard smoothness assumption does not conform
well with its empirical efficiency observed in practice [Lin et al., 2020c]. This motivates us to consider
whether additional modeling assumptions could better explain the empirical performance of FEDAVG.
The aforementioned lower bound is attained by a special piece-wise quadratic function with a sudden
curvature change, which is smooth (has bounded second-order derivatives) but has unbounded third-
order derivatives. A natural assumption to exclude this corner case is third-order smoothness, which
has been considered before in the context of federated learning [Yuan and Ma, 2020], and may be
representative of objectives in practice. For instance, loss functions used to learn many generalized
linear models, such as logistic regression, often exhibit third-order smoothness [Hastie et al., 2009].

With this third-order smoothness assumption, we show that the iterate bias reduces to ⇥(⌘3k2), one
order higher in ⌘ than the rate under only second-order smoothness.6 While the proofs for bounding
the iterate bias are quite technical, we show that it is easy to analyze the bias via a continuous
approach. More specifically, by studying the stochastic differential equation (SDE) corresponding to
the continuous limit of SGD, one can derive the limit of the iterate bias of generic objectives by using
the Kolmogorov backward equation of the SDE, see Section 2.3.

Leveraging this intuition from the bias, we prove state-of-the-art rates for FEDAVG under third-order
smoothness in both convex and non-convex settings (Theorems 4.1 and 4.2). In non-convex settings,
our convergence rate scales with 1/R

4
5 , which improves upon the best known rate of 1/R 2

3 [Yu et al.,
2019b] if we do not assume third-order smoothness.

1.1 Organization and Notation

In Section 2, we formally define the iterate bias of SGD, and state sharp bounds on its rate. In Section
3, we state our lower bounds for FEDAVG, and show how the iterate bias can be used to achieve
our sharp bounds. In Section 4, we state our convergence results for FEDAVG under third-order
smoothness. All proofs are deferred to the appendix.

We use bold lower case character to denote vectors (e.g., x). We use k · k to denote the `2-norm of
a vector, [n] to denote the set {1, . . . , n}. Throughout the paper, we use O,⌦,⇥ notation to hide
absolute constants only.

We defer the literature review to Section A due to space constraints.
6This rate is sharp according to our matching upper and lower bounds, see Theorems 2.4 and 2.5.
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2 Setup and Technical Overview: Intuition From Iterate Bias of SGD

The intuition from our lower bound comes from studying the behaviour of FEDAVG when the number
of clients, M , tends to infinity. In this case, the averaged iterate x(r+1,0) is precisely the expected
iterate after K iterations of SGD starting from the last averaged iterate, x(r,0). This motivates the
following definition.

Definition 2.1 (Iterate Bias of SGD). Let {x(k)
SGD}1k=0 and {z(k)GD }1

k=0 be the trajectories of SGD and
GD initialized at the same point x, formally

x(k+1)
SGD  x(k)

SGD � ⌘rf(x(k)
SGD ; ⇠

(k)
), x(0)

SGD = x;

z(k+1)
GD  z(k)GD � ⌘rF (zGD), z(0)GD = x.

The iterate bias (or in short “bias”) from x at the k-th step is defined as Ex(k)
SGD�z(k)GD , the difference

between the mean of SGD trajectory and the (deterministic) GD trajectory.

One important special case of Definition 2.1 is the iterate bias from a stationary point x?. In this case,
the gradient descent trajectory z(k)GD will stay at the optimum sincerF (z(k)SGD) ⌘ rF (x?

) = 0. The
iterate bias then reduces to E[x(k)

SGD]� x?. Notably, even for convex smooth objectives f , the expected
iterate E[x(k)

SGD] may drift away from the optimum x?, even if initialized at the x?. This occurs because
of a difference between the gradient of the expectation of an iterate, rf(E[·]), and the expectation of
the gradient of the iterate, E[rf(·)].
In Fig. 1, we illustrate this phenomenon via a one-dimensional objective. This figure, and our formal
results below, illustrate that for sufficiently small step sizes, the bias increases in k. For this reason,
doing more than one local step can sometimes be counterproductive (when k = 1, the bias is always
zero). This phenomenon is key to the poor dependence on K in the convergence rate we prove for
FEDAVG.

2.1 The Bias Under Second-Order Smoothness

In this subsection, we provide sharp bounds on the iterate bias under standard assumptions, formally
given below.
Assumption 1. Assume f(x; ⇠) is second-order differentiable w.r.t. x, and

(a) Convexity: f(x; ⇠) is convex with respect to x for any ⇠.

(b) Smoothness: f(x; ⇠) is H-smooth with respect to x. That is, for any ⇠, for any x,y, we have
krf(x; ⇠)�rf(y; ⇠)k2  Hkx� yk2.

(c) Bounded covariance: for any x, E⇠⇠D krf(x, ⇠)�rF (x)k22  �2.

We establish the following upper bound on the bias.7

Theorem 2.2 (Simplified from Theorem C.1). Under Assumption 1, there exists an absolute constant
c̄ such that for any initialization x, for any ⌘  1

H
, the iterate bias satisfies

���Ex(k)
SGD � z(k)GD

���
2


c̄ · ⌘2k 3
2H�.

In fact, we show in the following theorem that this upper bound of iterate bias is sharp.
Theorem 2.3 (Simplified from Theorem C.2). There exists an absolute constant c such that for any
H,�, there exists an objective f(x; ⇠) and distribution ⇠ ⇠ D satisfying Assumption 1 such that for
any integer K, for any ⌘  1

2KH
, and integer k 2 [2,K], the iterate bias from the optimum x? of F

is lower bounded as
���Ex(k)

SGD � z(k)GD

���
2
� c · ⌘2k 3

2H�.

Theorem 2.3 shows that the SGD trajectory can indeed drift away (in expectation) from the optimum
x? despite being initialized at x?. Our lower bound improves over the best known lower bound

7Throughout this section, we mainly focus on the iterate bias bound in the regime of sufficiently small ⌘ for
simplicity and easy comparison. Our complete theorem in appendix covers the case of general ⌘ choice.
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⌦(⌘2kH�) due to Woodworth et al. [2020b]. The lower bound is attained by running SGD with

Gaussian noise on the piecewise quadratic function f(x) :=

⇢
1
2Hx2 x � 0,
1
4Hx2 x < 0.

, first analyzed in

Woodworth et al. [2020b].

Recall that the bias originates from the difference between rf(E[x(k)
SGD]) and E[rf(x(k)

SGD)]. This
piecewise quadratic function has an unbounded third order derivative at 0, which causes this difference
to be large whenever the distribution of x(k)

SGD spans both sides of 0. This worst case construction
motivates our further study of the bias under a third-order derivative bound.

2.2 The Bias Under Third-Order Smoothness

We formally state our third-order smoothness condition in the following assumption.
Assumption 2. Assume f(x; ⇠) is third-order differentiable w.r.t. x for any ⇠, and

(a) f(x; ⇠) is Q-3rd-order-smooth, i.e. for any ⇠, for any x,y, kr2f(x; ⇠) � r2f(y; ⇠)k2 
Qkx� yk2.

(b) rf(x, ⇠) has �4-bounded 4th order central moment, i.e. for all x,
E⇠

h
krf(x, ⇠)�rF (x)]k4

i
 �4.

We show that under this additional assumption, the iterate bias reduces to O(⌘3k2Q�2
), which scales

on the order of ⌘3 (rather than ⌘2) as ⌘ goes to 0.
Theorem 2.4 (Simplified from Theorem C.3). Under Assumptions 1 and 2, there exists an ab-
solute constant c̄ such that for any initialization x, for any ⌘  1

2H , the iterate bias satisfies���Ex(k)
SGD � z(k)GD

���
2
 c̄ · ⌘3k2Q�2.

Theorem 2.4 also reveals the dependency on the third-order smoothness Q. In the extreme case where
Q = 0 (f is quadratic), the iterate bias will disappear. It is worth noting that since Assumption 1 is
still required in Theorem 2.4, the original upper bound O(⌘2k

3
2H�) from Theorem 2.2 still applies,

and one can formulate the upper bound as the minimum of the two.

The following lower bound shows that the upper bound in Theorem 2.4 is sharp.
Theorem 2.5 (Simplified from Theorem C.4). There exists an absolute constant c such that for any
H,�,K, for any sufficiently small Q (polynomially dependent on H,�,K), there exists an objective
f(x; ⇠) and distribution ⇠ ⇠ D satisfying Assumptions 1 and 2 such that for any ⌘  1

2HK
and

integer k 2 [2,K], the iterate bias from the optimum x? is lower bounded as
���Ex(k)

SGD � z(k)GD

���
2
�

c · ⌘3k2Q�2.

2.3 Revealing Iterate Bias Via Continuous Perspective

While the proofs of the results above are quite technical, the intuition for these bounds is much easier
to see in a continuous view of SGD. As an example, we demonstrate how the ⇥(⌘3k2Q�2

) term
shows up in Theorems 2.4 and 2.5.
Consider a one-dimensional instance of SGD with Gaussian noise, where f(x; ⇠) = F (x)� ⇠x, and
⇠ ⇠ N (0,�2

). The SGD then follows

x(k+1)
SGD = x(k)

SGD � ⌘rF (x(k)
SGD) + ⌘⇠(k), where ⇠(k) ⇠ N (0,�2

). (2.1)

The continuous limit of (2.1) corresponds to the following SDE, with the scaling t = ⌘k:

dX(t) = �F 0
(X(t))dt+

p
⌘�dBt, (2.2)

where Bt denotes the Brownian motion (also known as the Wiener process).8

8To justify the relation of Eq. (2.1) and Eq. (2.2), note that Eq. (2.1) can be viewed as a numerical discretization
(Euler-Maruyama discretization [Kloeden and Platen, 1992]) of the SDE (2.2) with time step-size ⌘.
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To get a handle of the iterate bias, our goal is to study E[X(t)|X(0) = x], the expectation of the SDE
solution X(t) initialized at x. We view this quantity as a multivariate function u(t, x) of t and x,
with the objective to Taylor expand u(t, x) around u(0, x) in t:

u(t, x) = u(0, x) + ut(0, x)t+
1

2
utt(0, x)t

2
+ o(t2).

For brevity, we use subscript notation to denote partial derivatives, e.g, ux denotes @u(t,x)
@x

. The
relationship of u(t, x) and the SDE (2.2) is established by the Kolmogorov backward equation as
follows.
Claim 2.6 (Kolmogorov backward equation [Øksendal, 2003]). Let u(t, x) = E[X(t)|X(0) = x],
then u(t, x) satisfies the following partial differential equation:

ut = �Fxux + ⌘�2uxx, with u(0, x) = x. (2.3)

Using this claim, we can compute the first two derivatives of u(t, x) in t, as follows:
Lemma 2.7. Suppose u(t, x) satisfies the PDE (2.3), then ut(0, x) = �Fx, utt(0, x) = FxFxx �
⌘�2Fxxx.

With Lemma 2.7 we can expand u(t, x) around (0, x):

u(t, x) = x� Fxt+
1

2

�
FxFxx � ⌘�2Fxxx

�
t2 + o(t2).

Ignoring higher order terms in t, the term � 1
2⌘�

2Fxxx reflects the difference between the noiseless
GD trajectory from x and E[X(t)|X(0) = x], that is, the iterate bias. Converting back to the discrete
trajectory (Eq. (2.1)) via the scaling t = ⌘k, we obtain

E[x(k)
SGD ]� z(k)GD ⇡ �

1

2
⌘3k2�2Fxxx(x).

When the third derivative of F is bounded by Q, this recovers the upper bound of O(⌘3k2Q�2
) in

Theorem 2.4. The lower bound of Theorem 2.5 follows by choosing a function with third derivative
Q at x?.

3 Lower Bound Results

In this section, we present our lower bounds for FEDAVG in both convex homogeneous and heteroge-
neous settings, and discuss its implications. We then show how use the lower bound on the bias of
SGD from Section 2 to establish a lower bound on the convergence of FEDAVG.

Our main result for the homogeneous setting is the following theorem.
Theorem 3.1 (Lower bound for homogeneous FEDAVG (see Theorem D.1)). For any K � 2, R, M ,
�, and D, there exists f(x; ⇠) and distribution ⇠ ⇠ D satisfying Assumption 1 with optimum x?, such
that for some initialization x(0,0) with kx(0,0) � x?k2 < D, the final iterate of FEDAVG with any
step size satisfies:

E
h
F (x(R,0)

)

i
� F (x?

) � ⌦

 
HD2

KR
+

�Dp
MKR

+min

(
�Dp
KR

,
H

1
3 �

2
3D

4
3

K
1
3R

2
3

)!
.

This lower bound matches the best upper bound given by the theorem 2 of [Woodworth et al., 2020b].

We extend our results to FEDAVG in the heterogeneous setting. Recall that in this setting, we allow
each client m to draw ⇠ from its own distribution Dm. We prove our results under the following
assumption on heterogeneity of the gradient at the optimum.

Assumption 3 (Bounded gradient heterogeneity at optimum). 1
M

P
M

m=1 krFm(x?
)k22  ⇣2⇤ .

Remark 3.2. While the right measure of heterogeneity is a subject of significant debate in the FL
community, the most popular are either a bound on gradient heterogeneity at x? (Assumption 3), or a
stronger assumption of uniform gradient heterogeneity: for any x, 1

M

P
M

m=1 krFm(x)k22  ⇣2. The
best-known lower bound, due to Woodworth et al. [2020a], considers the weaker Assumption 3. We
remark however that most upper bounds use the stronger uniform assumption (e.g., [Khaled et al.,
2020]).
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Theorem 3.3 (Lower bound for heterogeneous FEDAVG (see Theorem D.1)). For any K � 2, R,M ,
H , D, �, and ⇣⇤, there exist f(x; ⇠) and distributions {Dm}, each satisfying Assumption 1, and
together satisfying Assumption 3, such that for some initialization x(0,0) with kx(0,0) � x?k2 < D,
the final iterate of FEDAVG with any step size satisfies:

E
h
F (x(R,0)

)

i
� F (x?

) � ⌦

 
HD2

KR
+

�Dp
MKR

+min

(
�Dp
KR

,
H

1
3 �

2
3D

4
3

K
1
3R

2
3

)
+min

(
⇣2⇤
H

,
H

1
3 ⇣

2
3
⇤ D

4
3

R
2
3

)!

Theorem 3.3 is nearly tight, up to a difference in the definitions of heterogeneity (See Remark 3.2).
We compare our result to existing lower bounds and upper bounds in Table 1.

4 Upper Bounds for FEDAVG Under Third-Order Smoothness

In light of the limitations of FEDAVG discussed in Section 3, it is natural to ask if there are additional
assumptions under which FEDAVG may perform better. Several classes of additional assumptions
have been suggested for studying the performance of FEDAVG. Perhaps the most common, and the
one supported from our intuition on the bias, is an assumption of third-order smoothness, stated
formally in Assumption 2. Previously it has been shown that under such an assumption, FEDAVG
may converge faster. We present several state-of-the-art bounds for FEDAVG under Assumption 2,
including for the non-convex case.
Theorem 4.1 (Upper bound for FEDAVG under 3rd order smoothness (see Theorem E.1)). Suppose
f(x, ⇠) satisfies Assumptions 1 and Assumptions 2. Then for some step size, FEDAVG satisfies

E
⇥
krf(x̂)k2

⇤
 O

 
HB
KR

+
�
p
BHp

MKR
+

B
4
5 �

4
5Q

2
5

K
2
5R

4
5

!

where x̂ :=
1
M

P
m
x(r,k)
m for a random choice of k 2 [K], and r 2 [R], and B := F (x(0,0)

) �
infx F (x).

In the non-convex setting, as is standard in the FL literature [Stich, 2019, Yu et al., 2019b, Reddi
et al., 2021], we require an assumption bounding moments of the stochastic gradients. Note that this
is stronger that Assumption 1 which bounds the variance of the stochastic gradients.

Assumption 4 (Bounded gradients). For any x, we have E⇠

⇥
krf(x, ⇠)k4

⇤
 G4.

Theorem 4.2 (Upper bound for FEDAVG with non-Convex objectives under third-order smoothness,
see Theorem E.2). Suppose F (x) is H-smooth and f(x, ⇠) satisfies Assumptions 2 and 4. Then for
some step size, we have

E
⇥
krf(x̂)k2

⇤
 O

 
HB
KR

+
G
p
BHp

MKR
+

B
4
5G

4
5Q

2
5

R
4
5

!
,

where x̂ :=
1
M

P
m
x(r,k)
m for a random choice of k 2 [K], and r 2 [R], and B := F (x(0,0)

) �
infx F (x).

This theorem shows that the convergence rate of FEDAVG improves substantially under third order
smoothness. In comparison, the best known rate for FEDAVG with non-convex objectives (under
second-order smoothness alone) is HB

KR
+

G
p
BHp

MKR
+

B
2
3 G

2
3 H

2
3

R
2
3

,due to Yu et al. [2019b]. Observe that

we improve the dependence from R
2
3 in the third term to R

4
5 .

5 Conclusion
In this work we provided sharp lower bounds for homogeneous and heterogeneous FEDAVG that
matches the existing upper bound. By solving this open problem, we highlight the obstacles to
FEDAVG, and show how a third-order smoothness assumption can lead to faster convergence. We
expect the proposed techniques can shed light on the analysis of other federated algorithms and aid
design of more efficient federated algorithms.
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