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Abstract

We describe federated reconnaissance, a class of learning problems in which dis-
tributed clients learn new concepts independently and communicate that knowledge
efficiently. In particular, we propose an evaluation framework and methodological
baseline for a system in which each client is expected to learn a growing set of
classes and communicate knowledge of those classes efficiently with other clients,
such that, after knowledge merging, the clients should be able to accurately discrim-
inate between classes in the superset of classes observed by the set of clients. We
compare a range of learning algorithms for this problem and find that prototypical
networks are a strong approach in that they are robust to catastrophic forgetting
while incorporating new information efficiently. Furthermore, we show that the
online averaging of prototype vectors is effective for client model merging and
requires only a small amount of communication overhead, memory, and update
time per class with no gradient-based learning or hyperparameter tuning. Addi-
tionally, to put our results in context, we find that a simple, prototypical network
with four convolutional layers significantly outperforms complex, state of the art
continual learning algorithms, increasing the accuracy by over 22% (absolute) after
learning 600 Omniglot classes and over 33% (absolute) after learning 20 mini-
ImageNet classes incrementally. These results have important implications for
federated reconnaissance and continual learning more generally by demonstrating
that communicating feature vectors is an efficient, robust, and effective means for
distributed, continual learning.

1 Introduction

In this work, we present federated reconnaissance, a new a class of learning problems in which
distributed models should be able to learn new concepts independently and share that knowledge effi-
ciently. Typically in federated learning, a single static set of classes is learned by each client [McMa-
han et al., 2017]. In contrast, federated reconnaissance requires that each client can individually
learn a growing set of classes and communicate knowledge of previously observed and new classes
efficiently with other clients. This communication about learned classes permits merging the knowl-
edge from the clients; the resulting merged model is then expected to support the superset of the
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classes each client has been exposed to. The merged model can then be deployed back out to the
clients for further learning. In practice, a client in a distributed system may only see a small number
of examples for a new class. This problem therefore stands at the intersection of large bodies of
work on continual, meta-, and federated learning. Examples of this problem include mobile phone
applications in which the service should be able to both learn to identify instances of a new class
added by a user and transfer that classification ability to other client devices. In this paper, we outline
related work, formalize the federated reconnaissance problem statement, introduce a benchmark by
adapting mini-ImageNet [Vinyals et al.| 2016]], compare a range of learning algorithms and neural
network architectures, and find that a simple algorithm adapting prototypical networks [Snell et al.,
2017]] is a strong baseline for both single client continual learning and federated reconnaissance. Our
code and pretrained models are available at: https://github.com/ml4ai/fed-recon.

1.1 Prior Work

Continual learning of new concepts is an open and long-standing problem in machine learning and
artificial intelligence with no semblance of a unified solution [Thrun and Mitchell, |1995| |Lopez-Paz
and Ranzato, [2017, [Shin et al., 2017} Zenke et al., 2017, |van de Ven and Tolias| 2019} |Farajtabar et al.}
2020]]. While deep neural networks have proven to be incredibly effective in a wide range of tasks,
the available methods for continuously integrating new information whilst remembering previously
learned concepts suffer from being either compute inefficient (in the case of algorithms that retrain
on a cache of examples [Rebuffi et al., 2017 or on generated examples [[van de Ven et al., [2020]])
or lacking in expressivity and accuracy (in the case of regularization-based methods [Kirkpatrick
et al.,|2017]). Much earlier work on continual learning (see|van de Ven and Tolias|[2019]] and their
citations) focused on learning classes or tasks sequentially from scratch. While this is an interesting
problem setting for studying neural memory, it can be impractical and unnecessary for deployment
to production systems. In more recent work on continual learning, the authors in|{Javed and White
[2019]], Prabhu et al.| [2018]], Beaulieu et al.| [2020] change the continual learning problem setup by
assuming access to a set of pretraining data, often referred to as a set of meta-training tasks, and
find that such pretraining can benefit later continual learning. Access to a pretraining dataset is a
reasonable assumption for production systems and enables the development of algorithms that can
first learn invariances that can later be exploited when learning new classes online. In this work,
we assume access to a set of pretraining data and explore algorithms that allow for the efficient and
accurate learning of new classes sequentially.

In contrast to the common variants of continual learning, federated learning iteratively trains a
common model under the direction of a central server on data that is decentralized across many
devices, such as mobile phones. Federated learning can reduce communication overhead and privacy
concerns by removing the need to send the raw source data back to a server for traditional, centralized
machine learning [McMahan et al., 2017, |[Kairouz et al.,|2019]]. The goal in federated learning has
traditionally been to learn a shared parameterization from decentralized data, but not necessarily
to learn new concepts or classes online on different clients while preserving that discriminative
information when communicating between client and the server. Recent work [[Yoon et al., 2020]]
discusses federated continual learning yet assumes that each client learns distinct tasks. While
they address federated continual learning directly, the authors do not consider the direct sharing of
knowledge of classes. Instead they assume that each client is learning its own task and they focus
on reducing interference when transferring the network’s parameters, but not on merging explicit
knowledge of classes that have been seen by the clients. In many cases, it would instead be useful if
the server model could learn a single task with a growing set of classes by incorporating knowledge
of classes learned on client devices. Such a unified, class-incremental learning model could be
valuable to users of mobile devices, intelligence operations, robotics, or any situation in which new
concepts should be learned and shared between distributed clients when efficient communication,
privacy, and/or fast learning are paramount. Because this work builds on the motivation of federated
learning but with the explicit goal of ascertaining knowledge of new concepts that can be efficiently
communicated and reused, we call this problem federated reconnaissance.

1.2 Contributions

Federated reconnaissance poses a unique set of challenges. An effective federated reconnaissance
system must tackle efficient in situ learning of new classes and knowledge-preserving transfer.
To these ends, we systematically study different approaches to solving this problem including
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running stochastic gradient descent (SGD) on new data as it appears as an empirical lower bound,
an iCaRL [Rebuffi et al |2017] algorithm adapted for federated reconnaissance, an extension of
prototypical networks for distributed, continual learning, and, finally, SGD on the joint distribution of
all training data from all clients as an empirical upper bound.

We posit that, when a pretraining dataset is available, prototypical networks [Snell et al.,|2017] are a
strong baseline for federated reconnaissance due to:

1. The ability to compress concepts into relatively small vectors known as prototypes, enabling
efficient communication,

2. Robustness to catastrophic forgetting when learning on non-IID datzﬂ and

3. Enabling fast knowledge transfer as no gradient-based learning or hyperparameter tuning
are required during model merging.

To test this claim, we present two simple algorithms for using prototypical networks for federated
reconnaissance and evaluate them on the federated reconnaissance mini-ImageNet benchmark,
showing that they outperform the lower bound and iCaRL models handily in both accuracy and
computational complexity. We go on further to present pretraining methods that increase the accuracy
of prototypical networks on the federated reconnaissance mini-ImageNet benchmark. Additionally, to
put federated prototypical networks into the context of previous work, we show that they substantially
outperform recent state of the art works on few-shot continual learning from Javed and White|[2019]],
Beaulieu et al.| [2020]]. It is also worth noting that prototypical networks have stronger privacy
protection than existing class-incremental replay-based learning algorithms such as iCaRL since the
transfer of raw examples is avoided and as long as a minimum set of examples per class are averaged
on each client. We leave the empirical and theoretical work of differential privacy for federated
prototypical networks to future work.

2 Federated Reconnaissance Problem Statement

2.1 Desiderata

Federated reconnaissance requires continual learning on each client device, efficient communication,
and knowledge merging. Inspired by applications to learning new classes across a large number of
distributed client devices, we define the following desiderata of a federated reconnaissance learning
system:

1. Each client model should be able to learn new classes in situ from only a few examples and
be able to improve accuracy as more examples become available. E]

2. After learning new classes, each model should not forget previously seen classes. L.e., the
model should not suffer from catastrophic forgetting.

3. To reduce communication costs and to enable distributed learning when bandwidth is limited,
a federated reconnaissance system should be able to compress information before transfer.

4. Finally, to avoid costly retraining on all data on the central server each time a new class
is encountered by a client, the federated reconnaissance system should be able to merge
knowledge of new classes learned by distributed client models quickly.

The specific requirements of a real world implementation of federated reconnaissance will of course
determine the details and relative importance of each desideratum.

2.2 Problem Definition

Formally, federated reconnaissance consists of a set of clients C := {¢; | i € 1...C'} that each have
an exposure history to a growing set of classes M, ; := {p(y = j|z) | j € 1...M,} where C indicates

*In distributed online learning, the data is not guaranteed to be IID over time nor across clients since each
client may observe a local distribution of potentially correlated examples [Zhang et al.| [2021].

3In this work, we assume an in situ source of supervision and identification of new classes. We follow and
reproduce the single client continual learning benchmarks of [Javed and White, 2019| Beaulieu et al.,2020]] in
which the model only observes a small number (e.g. < 30) of examples to learn from at meta-test time.



the total number of clients, M; indicates the number of classes that client C; should be able to
discriminate between, and a class is represented as a probability p(y = j|z) of label j given an
input z. The central server is tasked with merging the clients’ knowledge of the superset of classes

M, = UZC:1 M ; and deploying an updated model that supports M back out to C. A client C; can be
exposed to a new class by training directly on a set of labeled examples {(z,y) | (z,y) € X; x Y;}
or via communication of compressed knowledge that allows the client to approximate p(y = j|z).

An effective federated reconnaissance learning sysfem entails accurate prediction of p(§ = j|z)
in expectation over clients in C regardless of whether or not each individual client learned class j
directly from labeled examples or vicariously via communication of compressed knowledge of j from
another client. This brings us to the distributed objective function of the federated reconnaissance
learning system at any point in time, which is the average loss across clients:
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where J; is the total number of classes that client C; has seen in its exposure history, K ; is the
number of examples on client C; for class j, H is the cross entropy between the predicted class §; ;. x
and the labeled class y; ;. for example k. This loss describes the expected loss over distributed
clients as illustrated as Eval. 1 in Figure 2] To simplify notation, we assume a fixed number of
clients throughout deployment, though the extension to a variable number of clients over time is
straightforward.

For concise terminology, we define a mission as an iteration of sending clients out, having them
collect and learn from data in situ and in parallel, and then finally communicating their findings back
to a central server. At each mission ¢ a few-shot dataset D, of examples from a set of classes is
produced by the environment. Federated reconnaissance comprises both problems in which clients
begin learning from scratch without any knowledge of p(X,Y") and those in which data from a
subset of base classes B is available for pretraining. The set B is similar to the meta-training set in
meta-learning [Finn et al.| [2017], though unlike the typical setup in few-shot low-way meta-learning,
we now expect the clients to learn a growing superset of classes which includes both the base classes
and field classes which are learned after a centralized pretraining procedure on B. Access to a dataset
representing B tends to be a reasonable assumption in practice as some number of pretraining classes
can usually be measured before a federated reconnaissance system is deployed.

We define the expected loss directly after model merging by taking the expectation over classes in
M:
t -
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This loss can be discretized into an accuracy metric and its evaluation is illustrated in Eval 2 in Figure
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At each time step t, each client model is first presented with a set of labeled examples of new
classes and then evaluated on held out examples from the superset of the new training classes and
all classes in it’s exposure history. This evaluation step is represented as evaluation diamond 0O in
Figure@} Following in situ, on-client learning, the clients send information back to the server, either
communicating information of new classes or updating the information of previously seen classes
and the server merges the information from multiple clients together. After this model merging step,
we evaluate accuracy on the superset of base and field classes that all clients have seen thus far on
held out examples (evaluation diamond 2 in Figure[2). As shown in Figure 2] the process of local
client learning and communicating knowledge back to the server is repeated iteratively. Therefore,
we want to minimize the expected loss in equation [1jover some horizon of missions {¢ € N[t < T'}:

min E [£] “4)
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or alternatively, after the agents have learned for some fixed number of missions:
min L7 (&)



For simplicity of exposition and to highlight the unique challenges of continual distributed learning,
our reported tabular results on the mini-ImageNet benchmark evaluate accuracy at the end of all
missions according to[5]

It is worth noting that because the single client in situ update is a non-IID class incremental learning
problem, federated reconnaissance generalizes class incremental learning to multiple clients. There-
fore in this work, we evaluate a range of learning algorithms and backbones on both the federated
reconnaissance problem and prototypical networks on the single client, few shot continual learning
benchmark proposed by Javed and White|[2019].

3 Methods

3.1 Learning Algorithms

For federated reconnaissance, we compare four approaches including a Lower Baseline which simply
trains each client model with SGD on the current mission’s data without access to previously seen
data; a version of iCaRL adapted for federated reconnaissance [Rebuffi et al.,2017]; an extension
of Prototypical Networks [Snell et al., 2017] for distributed, continual learning; and an empirical
Upper Baseline in which all clients have access to all current and previous data and an unlimited
compute budget for retraining with SGD.

To put federated prototypical networks into the context of existing work, we also compare to a state of
the art few-shot learning method Online aware Meta-learning (OML) from Javed and White|[2019]
on existing, single client, few-shot continual learning benchmarks. We describe all methods further
in Section[3.2)and in the appendix.

3.2 Federated Prototypical Networks

We propose to use prototypical networks to efficiently learn new classes in sequence. Given that
prototypical networks are not gradient-based at test-time, they can be made to be robust to catastrophic
forgetting when learning new classes by discriminative pretraining on a sufficiently large number
of classes. When evaluated on a federated reconnaissance benchmark, we can compute an unbiased
estimate of the mean (and the variance if we so desire) for each class by simply storing the previous
prototype and the number of examples used to compute the previous prototype. We define prototypical
networks following [Snell et al.| 2017]:

z = fo(x;) (6)
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in which f is a neural network embedding function parameterized by 6 and .S; is the support set of
the class j. Training a prototypical network proceeds be minimizing the cross entropy loss over query
examples, where the predicted class is taken as the softmax over negative Euclidean distances d(-)
between query embeddings and the prototypes of the support data:
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Now we would like to be able to compute unbiased estimates of prototypes for classes that are
observed by multiple clients at the current time step or have been observed previously in exposure
history. To improve storage and communication efficiency, instead of storing all raw examples for
a class or even all example embeddings for a class, we instead can compute an unbiased running
average for each prototype by storing the previous prototype and the number of examples used to
compute it:

ke | (ke — k1)
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where k; is the number of examples in total observed of class j at time ¢, k;_; is the number of
total classes observed at time ¢ — 1 for class j, Z; is the centroid for class j at time ¢, and y; is the
online average of z from all examples for class j. Modulo numerical issues, via the law of large




numbers, such a running average will converge to the true prototype p* for each class, given a fixed
parameterization of the embedding function fy.

7 5t ask — o0 (10)

Numerical issues cannot be so easily ignored in practice, so we use a more numerically stable
algorithm for online averaging as proposed by West [[1979], Schubert and Gertz|[2018]]:
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Putting these ideas together, we arrive at Algorithm [T which implements a mulit-client learning and
model merging routine with prototypical networks. Algorithm [T]can be used for on client learning and
knowledge transfer with a central server and even other clients for fully decentralized peer-to-peer
learning. In addition to the algorithm shown in[I] we also evaluate a variant of the algorithm which
removes the numerical effects of computing online averages by simply storing and transferring
embeddings of all examples seen and computing the prototypes only at inference time.

For our experiments with prototypical networks, we reproduced the model architectures used in the
original paper [Snell et al.l 2017]], though also experimented with a few key additional features. First,
we find that overfitting to the pretraining base classes is a significant problem in the small-scale
mini-ImageNet federated reconnaissance benchmark we propose, so additional regularization is
necessary. We find that applying dropout with a droprate of 0.2 in the embedding space significantly
improves learning new classes. Furthermore, we find that the accuracy performance after ingesting
new examples from classes quickly plateaus for prototypical networks when ingesting more examples
than they were trained on. The problem of prototypical networks over-specializing the pre-trained
model to solving k-shot problems, where k is equal to the number of training shots per class, has also
been noted in recent literature by Triantafillou et al.|[2020a]. To address this problem, we find that
the simple, model-agnostic augmentation strategy of sampling k at each iteration during pretraining
yields significant benefits. We call this procedure k-shot augmentation and find that uniform sampling
k from [5, 50] during pretraining significantly improves distributed, continual learning.

3.3 Neural Network Architectures

We evaluate all learning algorithms with two different neural network backbones. First, in line with
a large body of work on meta-learning, we use the typical 4-convolutional layer model (denoted
4conv in figures) as used in|Snell et al.|[2017], [Finn et al.| [2017]] and many other works. This model
contains 4 layers each with 3 x 3 2-d convolution with 64 output channels, batch normalization, a
reL.U non-linearity, and finally 2 x 2 maxpooling to cut the spatial dimensions in half at each layer.
For the prototypical network model, we unroll the final feature channels following |Snell et al.|[2017]).
In line with more recent work Triantafillou et al.|[2020b], we also evaluate all learning algorithms
with a resnet-18 backbone [He et al., 2016]], which is a variant of the common residual network model
that contains 18 layers.

4 Evaluation

4.1 Single Client Continual Learning

To put the strengths of using prototypical networks for continual learning into the context of prior
work, we evaluate a single client continual learning benchmark put forth by Javed and White| [2019]]
in which a learner is exposed to 30 examples from classes seen in non-overlapping succession. On
this evaluation, we compare prototypical networks to the OML method proposed by [Javed and White
[2019] in a local reproduction. Following Javed and White| [2019], the accuracy across all classes
seen to date is computed at each evaluation.

4.2 mini-ImageNet Federated Reconnaissance Benchmark

To evaluate federated reconnaissance, a new benchmark was required. Taking inspiration from Javed
and White| [2019]], we adapted the popular mini-ImageNet [[Vinyals et al.| [2016] dataset in order
to create the mini-ImageNet Federated Reconnaissance Benchmark. The mini-ImageNet dataset



is composed of 100 classes taken from the Imagenet large scale visual recognition challenge [Rus-
sakovsky et al.,[2015]], with 600 examples each. We split the classes in half, yielding 50 base classes
for pretraining and 50 field classes for online learning. Base classes are not seen again during online
learning. The examples for each class are split into 500 training examples and 100 test examples for
each class. In the default parameterization of the benchmark, we instantiate 5 clients and, during
online learning, for each mission we sample 5 classes per client from field classes and 30 images per
class. We resize all images to 84 x 84. We sample examples without replacement and the evaluation
ends when all training examples have been sampled.

The problem with the simple accuracy metric in [3]is that in the presence of a pretraining dataset
the metric will bias towards the pretraining classes in B until a sufficient number of new classes
have been observed. To summarize the learning dynamics of federated reconnaissance, a metric that
balances across base and field classes is required. We simply weight these two accuracies computed
on the test sets of classes equally for all results reported in [5}

QCCpase + ACCfield
2

(CCavg = (12)
In Section[5] we report results from evaluating this accuracy metric after models have been merged
back to the server from clients (Eval 2 diamond in figure[2). All results are evaluated on the union of
the set of classes that any client has seen thus far at mission ¢, Ml;. All accuracy metrics we report
here are computed against the test set prs:(y|2) for both base and field classes.

5 Results

5.1 Federated Reconnaissance

Of all learning algorithms evaluated on the mini-ImageNet Federated Reconnaissance Benchmark,
we find that federated prototypical network variants are the most accurate and computationally
efficient (see Figure 3] and Table[I). In particular, we find that using k-shot augmentation during
pretraining of prototypical networks is an effective means of improving the Federated Reconnaissance
Benchmark accuracy of prototypical networks across a range of k values.

To better understand the learning dynamics of the algorithms evaluated on the Federated Recon-
naissance Benchmark, we decompose accg,,y shown in eq. @ into its constituent base and field
accuracies as shown in figure[3]c and d. We find that prototypical networks are not only able to resist
catastrophic forgetting of base classes and examples seen earlier during the Federated Reconnaissance
Benchmark but can do so while improving accuracy on field classes. These results are in stark
contrast to our adapted version of iCaRL, which suffers from catastrophic forgetting while also being
unable to improve its accuracy in distinguishing new concepts as more data becomes available.

5.2 Single Client Continual Learning

On the single client on the class-incremental benchmark used in Javed and White [2019], Beaulieu
et al. [2020], we find that our prototypical network significantly outperforms complex, state of the
art continual learning algorithms, increasing the accuracy by over 22% (absolute) after learning 600
Omniglot classes and over 33% (absolute) after learning 20 mini-ImageNet classes incrementally
(see Figure[I). See the appendix for more details.

6 Discussion

In this work, we have presented federated reconnaissance, a new a class of learning problems in
which distributed clients learn new concepts independently and must be able to communicate that
knowledge efficiently. We proposed an evaluation framework and evaluated a number of baseline
learning algorithms for distributed continual learning. In particular, we derive simple algorithms
for efficiently leveraging prototypical networks and find that they are a strong baseline method
for federated reconnaissance and class-incremental continual learning. These results suggest that
the simple idea of passing feature vectors is an important avenue for future research on federated
reconnaissance and continual learning more generally.
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