A Appendix

A.1 Proof of Theorem 2

Proof. First note that $W_{encoder} \in \mathbb{R}^{r \times d}$ since we limit the dimension of the code layer of the AutoEncoder to be $r = \operatorname{rank}(L^*)$. The problem we consider is:

$$\min_{\boldsymbol{L}, \boldsymbol{E}, \boldsymbol{W}_{encoder} \in \mathbb{R}^{r \times d}} \| \boldsymbol{W}_{encoder} \boldsymbol{L} \|_{2,1} + \lambda \| \boldsymbol{E}^{T} \|_{2,1}, s.t. \ \boldsymbol{H} = \boldsymbol{L} + \boldsymbol{E}, \boldsymbol{L} = \mathcal{D}_{\phi}(\mathcal{E}_{\psi}(\boldsymbol{L}))$$
(11)

Since we have the constraint $L = \mathcal{D}_{\phi}(\mathcal{E}_{\psi}(L))$, the rank of any feasible L should be no more than r, and L must lie within the row-space of $W_{encoder}$. So we can write $W_{encoder} = RU^T$ where $R \in \mathbb{R}^{r \times r}$, and U are the top-r left singular vectors of L. As the rows of $W_{encoder}$ are orthornormal, *i.e.*, $W_{encoder}W_{encoder}^T = I$, so $RU^TUR^T = I$ and therefore $RR^T = I$ (so this square matrix R is unitary). Further, since setting $W_{decoder} = W_{encoder}^T$ will always meet the constraint $L = \mathcal{D}_{\phi}(\mathcal{E}_{\psi}(L))$, the main problem we need to consider becomes:

$$\min_{\substack{\{L|\operatorname{rank}(L) \le r\}, E, \\ W_{encoder} = RU^T, R \text{ is unitary}}} \|W_{encoder} L\|_{2,1} + \lambda \|E^T\|_{2,1}, s.t. H = L + E,$$
(12)

Since $\|L\|_{*} = \|RU^{T}L\|_{*} = \|W_{encoder}L\|_{*} = \|I(W_{encoder}L)\|_{*} = \|\sum_{i=1}^{r} e_{i}(W_{encoder}L)_{i,:}\|_{*} \leq \sum_{i=1}^{r} \|e_{i}(W_{encoder}L)_{i,:}\|_{*} = \sum_{i=1}^{r} \|(W_{encoder}L)_{i,:}\|_{2} \leq \|W_{encoder}L\|_{2,1}$. The equality is achieved when R = I, *i.e.*, $W_{encoder} = U^{T}$, because $\|W_{encoder}L\|_{2,1} = \|U^{T}L\|_{2,1} = \|U^{T}U\Sigma V^{T}\|_{2,1} = \|\Sigma V^{T}\|_{2,1} = \sum_{i=1}^{r} \sigma_{i} = \|L\|_{*}$. So

$$\min_{\substack{\{\boldsymbol{L}|\operatorname{rank}(\boldsymbol{L})\leq r\},\boldsymbol{E},\\\boldsymbol{W}_{encoder}=\boldsymbol{R}\boldsymbol{U}^{T},\boldsymbol{R} \text{ is unitary}}} \|\boldsymbol{W}_{encoder}\boldsymbol{L}\|_{2,1} + \lambda \|\boldsymbol{E}^{T}\|_{2,1} \geq \min_{\substack{\{\boldsymbol{L}|\operatorname{rank}(\boldsymbol{L})\leq r\},\boldsymbol{E}}} \|\boldsymbol{L}\|_{*} + \lambda \|\boldsymbol{E}^{T}\|_{2,1},$$

with equality achieved when $W_{encoder}$ equals top-r left singular vectors of L.

Then we only need to consider the right-hand-side of Eq. 13, *i.e.*,

$$\min_{\{\boldsymbol{L}|\operatorname{rank}(\boldsymbol{L})\leq r\},\boldsymbol{E}} \|\boldsymbol{L}\|_* + \lambda \|\boldsymbol{E}^T\|_{2,1} \quad s.t. \; \boldsymbol{H} = \boldsymbol{L} + \boldsymbol{E}$$
(14)

(13)

Recall that under the conditions of Theorem 1, the solution \hat{L} of Eq. 2 has exactly the same column space as L^* (\hat{L} may not and not necessary to be equal to L^*), so rank(\hat{L}) = r. Then the solution \hat{L} of Eq. 2 must also be the global optimal solution of Eq. 14. Finally, as the row-space of $W_{encoder}$ equals the column-space of \hat{L} , it recovers the underlying subspace of L^* exactly.

A.2 Proof of Theorem 3

Proof. A) Suppose $\mathcal{D}_{\phi}(\mathcal{E}_{\psi}(l'))$ is the global optimal solution of Eq. 10 that is different from $\mathcal{D}_{\phi}(\mathcal{E}_{\psi}(l^*))$. Let $\mathcal{D}_{\phi}(\mathcal{E}_{\psi}(l')) = \mathcal{D}_{\phi}(\mathcal{E}_{\psi}(l^*)) - v$. So we have $v \in Range(W_{end}) \setminus 0$.

$$\sum_{i=1}^{M} \|[\boldsymbol{h} - \mathcal{D}_{\phi}(\mathcal{E}_{\psi}(\boldsymbol{l}'))]_i\|_2$$
(15)

$$=\sum_{i=1}^{M} \|[\boldsymbol{h} - \mathcal{D}_{\phi}(\mathcal{E}_{\psi}(\boldsymbol{l}^{*})) + \boldsymbol{v}]_{i}\|_{2}$$
(16)

$$=\sum_{i=1}^{M} \|[\boldsymbol{h} - \mathcal{D}_{\phi}(\mathcal{E}_{\psi}(\boldsymbol{l}^{*}))]_{i} + \boldsymbol{v}_{i}\|_{2}$$
(17)

$$= \sum_{i \in S} \|[\boldsymbol{h} - \mathcal{D}_{\phi}(\mathcal{E}_{\psi}(\boldsymbol{l}^{*}))]_{i} + \boldsymbol{v}_{i}\|_{2} + \sum_{i \in \bar{S}} \|[\boldsymbol{h} - \mathcal{D}_{\phi}(\mathcal{E}_{\psi}(\boldsymbol{l}^{*}))]_{i} + \boldsymbol{v}_{i}\|_{2}$$
(18)

$$= \sum_{i \in S} \|\boldsymbol{v}_i\|_2 + \sum_{i \in \bar{S}} \|[\boldsymbol{h} - \mathcal{D}_{\phi}(\mathcal{E}_{\psi}(\boldsymbol{l}^*))]_i + \boldsymbol{v}_i\|_2$$
(19)

$$\geq \sum_{i \in S} \|\boldsymbol{v}_i\|_2 + \sum_{i \in \bar{S}} \|[\boldsymbol{h} - \mathcal{D}_{\phi}(\mathcal{E}_{\psi}(\boldsymbol{l}^*))]_i\|_2 - \sum_{i \in \bar{S}} \|\boldsymbol{v}_i\|_2$$
(20)

$$> \sum_{i \in \bar{S}} \| [\boldsymbol{h} - \mathcal{D}_{\phi}(\mathcal{E}_{\psi}(\boldsymbol{l}^*))]_i \|_2$$
(21)

$$=\sum_{i=1}^{M} \|[\boldsymbol{h} - \mathcal{D}_{\phi}(\mathcal{E}_{\psi}(\boldsymbol{l}^{*}))]_{i}\|_{2}$$
(22)

where S is the index set of size g such that $e_i^* = 0$, $\forall i \in S$. And the last inequality follows from the assumed range space property since $v \in Range(W_{end}) \setminus 0$.

The above contradicts the assumption that $\mathcal{D}_{\phi}(\mathcal{E}_{\psi}(l'))$ is the global optimal solution that is different from $\mathcal{D}_{\phi}(\mathcal{E}_{\psi}(l^*))$.

B) First, note that $h = \mathcal{D}_{\phi}(\mathcal{E}_{\psi}(l^*)) + e^*$ and $\sum_{i=1}^{M} \mathbb{1}\{e_i^* \neq \mathbf{0}\} \leq M-g$. The following proof strategy is motivated from the robust linear regression with block-sparse corruptions [12]. Suppose $\mathcal{D}_{\phi}(\mathcal{E}_{\psi}(l'))$ is the global optimal solution of Eq. 9 that is different from $\mathcal{D}_{\phi}(\mathcal{E}_{\psi}(l^*))$. Let $h = \mathcal{D}_{\phi}(\mathcal{E}_{\psi}(l')) + e'$, then we have

$$\sum_{i=1}^{M} \mathbb{1}\{\boldsymbol{e}'_i \neq \boldsymbol{0}\} \le \sum_{i=1}^{M} \mathbb{1}\{\boldsymbol{e}^*_i \neq \boldsymbol{0}\} \le M - g$$
(23)

and $\mathcal{D}_{\phi}(\mathcal{E}_{\psi}(\boldsymbol{l}')) + \boldsymbol{e}' = \mathcal{D}_{\phi}(\mathcal{E}_{\psi}(\boldsymbol{l}^*)) + \boldsymbol{e}^*.$

From Eq. 23 we know that

$$\sum_{i=1}^{M} \mathbb{1}\{[\mathcal{D}_{\phi}(\mathcal{E}_{\psi}(\boldsymbol{l}^{*})) - \mathcal{D}_{\phi}(\mathcal{E}_{\psi}(\boldsymbol{l}'))]_{i} = \boldsymbol{0}\} \ge M - \sum_{i=1}^{M} \mathbb{1}\{\boldsymbol{e}_{i}^{*} \neq \boldsymbol{0}\} - \sum_{i=1}^{M} \mathbb{1}\{\boldsymbol{e}_{i}' \neq \boldsymbol{0}\}$$
(24)

$$\geq M - (M - g) - (M - g) = 2g - M$$
(25)

Let $\mathcal{D}_{\phi}(\mathcal{E}_{\psi}(\mathbf{l}')) = \mathcal{D}_{\phi}(\mathcal{E}_{\psi}(\mathbf{l}^*)) - \mathbf{v}$, so we have $\mathbf{v} \in Range(\mathbf{W}_{end}) \setminus 0$ and $\sum_{i=1}^{M} \mathbb{1}\{\mathbf{v}_i = \mathbf{0}\} \geq 2g - M$. Now split the M blocks into 3 disjoint sets $\{\Omega_0, \Omega_1, \Omega_2\}$, where Ω_0 is any subset with size 2g - M such that $\mathbf{v}_{\Omega_0} = \mathbf{0}$, and $|\Omega_1| = |\Omega_2| = M - g$. Since $|\Omega_0 \cup \Omega_1| = g$, by our assumption, we have $\sum_{i \in \Omega_0 \cup \Omega_1} \|\mathbf{v}_i\|_2 > \sum_{i \in \Omega_2} \|\mathbf{v}_i\|_2$. Since $|\Omega_0 \cup \Omega_2| = g$, by our assumption, we have $\sum_{i \in \Omega_0 \cup \Omega_2} \|\mathbf{v}_i\|_2 > \sum_{i \in \Omega_1} \|\mathbf{v}_i\|_2$. However, this leads to a contradiction since $\sum_{i \in \Omega_0} \|\mathbf{v}_i\|_2 = 0$.