
A Appendix

A.1 Proof of Theorem 2

Proof. First note that Wencoder ∈ Rr×d since we limit the dimension of the code layer of the
AutoEncoder to be r = rank(L∗). The problem we consider is:

min
L,E,Wencoder∈Rr×d

∥WencoderL∥2,1 + λ∥ET ∥2,1, s.t.H = L+E,L = Dϕ(Eψ(L)) (11)

Since we have the constraint L = Dϕ(Eψ(L)), the rank of any feasible L should be no more
than r, and L must lie within the row-space of Wencoder. So we can write Wencoder = RUT

where R ∈ Rr×r, and U are the top-r left singular vectors of L. As the rows of Wencoder are
orthornormal, i.e., WencoderW

T
encoder = I , so RUTURT = I and therefore RRT = I (so this

square matrix R is unitary). Further, since setting Wdecoder = W T
encoder will always meet the

constraint L = Dϕ(Eψ(L)), the main problem we need to consider becomes:

min
{L|rank(L)≤r},E,

Wencoder=RUT ,R is unitary

∥WencoderL∥2,1 + λ∥ET ∥2,1, s.t.H = L+E, (12)

Since ∥L∥∗ = ∥RUTL∥∗ = ∥WencoderL∥∗ = ∥I(WencoderL)∥∗ =

∥
∑r
i=1 ei(WencoderL)i,:∥∗ ≤

∑r
i=1 ∥ei(WencoderL)i,:∥ =

∑r
i=1 ∥(WencoderL)i,:∥2 ≜

∥WencoderL∥2,1. The equality is achieved when R = I , i.e., Wencoder = UT , because
∥WencoderL∥2,1 = ∥UTL∥2,1 = ∥UTUΣV T ∥2,1 = ∥ΣV T ∥2,1 =

∑r
i=1 σi = ∥L∥∗.

So

min
{L|rank(L)≤r},E,

Wencoder=RUT ,R is unitary

∥WencoderL∥2,1 + λ∥ET ∥2,1 ≥ min
{L|rank(L)≤r},E

∥L∥∗ + λ∥ET ∥2,1,

(13)
with equality achieved when Wencoder equals top-r left singular vectors of L.

Then we only need to consider the right-hand-side of Eq. 13, i.e.,

min
{L|rank(L)≤r},E

∥L∥∗ + λ∥ET ∥2,1 s.t.H = L+E (14)

Recall that under the conditions of Theorem 1, the solution L̂ of Eq. 2 has exactly the same column
space as L∗ (L̂ may not and not necessary to be equal to L∗), so rank(L̂) = r. Then the solution L̂
of Eq. 2 must also be the global optimal solution of Eq. 14. Finally, as the row-space of Wencoder

equals the column-space of L̂, it recovers the underlying subspace of L∗ exactly.

10



A.2 Proof of Theorem 3

Proof. A) Suppose Dϕ(Eψ(l′)) is the global optimal solution of Eq. 10 that is different from
Dϕ(Eψ(l∗)). Let Dϕ(Eψ(l′)) = Dϕ(Eψ(l∗))− v. So we have v ∈ Range(Wend)\0.

M∑
i=1

∥[h−Dϕ(Eψ(l′))]i∥2 (15)

=

M∑
i=1

∥[h−Dϕ(Eψ(l∗)) + v]i∥2 (16)

=

M∑
i=1

∥[h−Dϕ(Eψ(l∗))]i + vi∥2 (17)

=
∑
i∈S

∥[h−Dϕ(Eψ(l∗))]i + vi∥2 +
∑
i∈S̄

∥[h−Dϕ(Eψ(l∗))]i + vi∥2 (18)

=
∑
i∈S

∥vi∥2 +
∑
i∈S̄

∥[h−Dϕ(Eψ(l∗))]i + vi∥2 (19)

≥
∑
i∈S

∥vi∥2 +
∑
i∈S̄

∥[h−Dϕ(Eψ(l∗))]i∥2 −
∑
i∈S̄

∥vi∥2 (20)

>
∑
i∈S̄

∥[h−Dϕ(Eψ(l∗))]i∥2 (21)

=

M∑
i=1

∥[h−Dϕ(Eψ(l∗))]i∥2 (22)

where S is the index set of size g such that e∗i = 0,∀i ∈ S. And the last inequality follows from the
assumed range space property since v ∈ Range(Wend)\0.

The above contradicts the assumption that Dϕ(Eψ(l′)) is the global optimal solution that is different
from Dϕ(Eψ(l∗)).
B) First, note that h = Dϕ(Eψ(l∗))+e∗ and

∑M
i=1 1{e∗i ̸= 0} ≤M−g. The following proof strategy

is motivated from the robust linear regression with block-sparse corruptions [12]. Suppose Dϕ(Eψ(l′))
is the global optimal solution of Eq. 9 that is different from Dϕ(Eψ(l∗)). Let h = Dϕ(Eψ(l′)) + e′,
then we have

M∑
i=1

1{e′i ̸= 0} ≤
M∑
i=1

1{e∗i ̸= 0} ≤M − g (23)

and Dϕ(Eψ(l′)) + e′ = Dϕ(Eψ(l∗)) + e∗.

From Eq. 23 we know that

M∑
i=1

1{[Dϕ(Eψ(l∗))−Dϕ(Eψ(l′))]i = 0} ≥M −
M∑
i=1

1{e∗i ̸= 0} −
M∑
i=1

1{e′i ̸= 0} (24)

≥M − (M − g)− (M − g) = 2g −M (25)

Let Dϕ(Eψ(l′)) = Dϕ(Eψ(l∗)) − v, so we have v ∈ Range(Wend)\0 and
∑M
i=1 1{vi = 0} ≥

2g −M . Now split the M blocks into 3 disjoint sets {Ω0,Ω1,Ω2}, where Ω0 is any subset with size
2g −M such that vΩ0 = 0, and |Ω1| = |Ω2| = M − g. Since |Ω0 ∪ Ω1| = g, by our assumption,
we have

∑
i∈Ω0∪Ω1

∥vi∥2 >
∑
i∈Ω2

∥vi∥2. Since |Ω0 ∪ Ω2| = g, by our assumption, we have∑
i∈Ω0∪Ω2

∥vi∥2 >
∑
i∈Ω1

∥vi∥2. However, this leads to a contradiction since
∑
i∈Ω0

∥vi∥2 =
0.
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