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Abstract

This paper studies the problem of federated learning (FL) in the absence of a trust-
worthy server/clients. In this setting, each client needs to ensure the privacy of its
own data without relying on the server or other clients. We study local differential
privacy (LDP) at the client level and provide tight upper and lower bounds that
establish the minimax optimal rates (up to logarithms) for LDP convex/strongly
convex federated stochastic optimization. Our rates match the optimal statistical
rates in certain practical parameter regimes (“privacy for free”). Second, we de-
velop a novel time-varying noisy SGD algorithm, leading to the first non-trivial
LDP risk bounds for FL with non-i.i.d. clients. Third, we consider the special
case where each client’s loss function is empirical and develop an accelerated
LDP FL algorithm to improve communication complexity compared to existing
works. We also provide matching lower bounds, establishing the optimality of our
algorithm for convex/strongly convex settings. Fourth, with a secure shuffler to
anonymize client reports (but without a trusted server), our algorithm attains the op-
timal central DP rates for stochastic convex/strongly convex optimization, thereby
achieving optimality in the local and central models simultaneously. Our upper
bounds quantify the role of network communication reliability in performance. We
illustrate the practical utility of our algorithm with numerical experiments.

1 Introduction
In federated learning, each “client” (e.g. cell-phone users or organizations such as hospitals) stores
its data locally and a central server coordinates updates to achieve the global learning objective [40].
Federated learning (FL) has been deployed across application domains such as the internet of things
[61], wireless communication [55], medicine [16], finance [1], and by companies such as Google
[63] and Apple [4]. One of the primary reasons for the introduction of FL was to offer greater privacy
for sensitive user data [54]. Unfortunately, merely storing data locally is not sufficient to prevent data
leakage, as model parameters or updates can still reveal sensitive information [27, 35, 66, 80]. These
leaks can occur when clients send updates to the server, which an adversary may be able to access,
or (in decentralized/peer-to-peer FL) directly to other clients. Therefore, it is important to develop
privacy-preserving mechanisms for FL that do not rely on the server or other clients to implement.

Consider a FL setting with N clients, each containing a local data set with ni samples: Xi “
pxi,1, ¨ ¨ ¨ , xi,niq for i P rN s. In each round of communication r, a uniformly random subset Sr of
Mr P rN s clients is able to participate, where tMruRr“1 are i.i.d. random variables. For all i, let Di

be a probability distribution on a set Xi containing data and denote X :“ îN
i“1 Xi. Given a convex

(in w) loss function f : W ˆ X Ñ R, define client i’s local objective as
Fipwq :“ Exi„Dirfpw, xiqs, (1)

where W Ä Rd is closed, convex, and }w}2 § D, @w P W . At times, we may focus on empirical
risk minimization (ERM) framework where pFipwq :“ 1

ni

∞ni

j“1 fpw, xi,jq. Our goal is to solve
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min
wPW

#
F pwq :“

Nÿ

i“1

piFipwq
+
, (2)

or, in the ERM case, minwPWt pF pwq :“ ∞N
i“1 pi

pFipwqu, while maintaining the privacy of each
client. Here pi • 0 with

∞
i pi “ 1. We assume WLOG (see Appendix B) that pi “ 1

N , @i P rN s.
We say problem (2) is “i.i.d.” if Xi “ X and Di “ D @i. When Fi takes the general form (1) (not
necessarily ERM), we refer to the problem as “SCO” (stochastic convex optimization) for emphasis.

Popular algorithms for FL include Local SGD/Federated Averaging [55] and Minibatch SGD. Both
of these are fully interactive algorithms, meaning they can adaptively query each client multiple
times. A subset of fully interactive algorithms is the set of sequentially interactive algorithms,
which can query clients adaptively in sequence, but cannot query any one client more than once.
Non-interactive algorithms are non-adaptive sequentially interactive algorithms: they query each
client once, independently of other clients’ reports. See [39] for further discussion.

Notions of Privacy for FL: Given the practical importance of maintaining the privacy of user data
during the FL process, numerous different definitions of private FL have been proposed. Some
of these have used secure multi-party computation (MPC) [12, 53], but this approach leaves users
vulnerable to inference attacks on the trained model. This is in contrast to differential privacy (DP),
which by now has been widely accepted as the gold standard of rigorous data privacy notions. DP
is defined with respect to a database space X and a measure of distance ⇢ : X2 Ñ r0,8q between
databases. We say two databases X,X1 P X are ⇢-adjacent if ⇢pX,X1q § 1.

Definition 1. (Differential Privacy) Let ✏ • 0, � P r0, 1q. A randomized algorithm A : X Ñ W is
p✏, �q-differentially private (DP) if for all ⇢-adjacent data sets X,X1 P X and all measurable subsets
S Ä W , we have

PpApXq P Sq § e
✏PpApX1q P Sq ` �. (3)

If (3) holds for all measurable subsets S, then we denote this property by ApXq »
p✏,�q

ApX1q. For

FL, we will fix X :“ Xn1
1 ˆ ¨ ¨ ¨ ˆ XnN

N so that databases X in our FL setting consist of N client
datasets X “ pX1, ¨ ¨ ¨XN q. Definition 1 says that an algorithm is DP if with high probability,
an adversary cannot distinguish between the outputs of the algorithm when it is run on adjacent
databases. Depending on the choice of ⇢, we can get different variations of DP. For example, in
the classical notion of central differential privacy (CDP) (often simply referred to as “differential
privacy”) [19], ⇢pX,X1q :“ ∞N

i“1

∞ni

j“1 xi,j‰x1
i,j

is the hamming distance and adjacent databases
are those differing in a single sample. In the context of FL, a major problem with CDP is that it does
not preclude the untrusted server from accessing non-private updates (which may leak clients’ data).

Client-level DP (also called user-level DP) has been proposed as an alternative to CDP where a single
person may contribute many samples to the database (e.g. language modeling) [55, 29, 38, 28, 72, 79,
47]. It is defined by taking ⇢pX,X1q “ ∞N

i“1 Xi‰X1
i
. Client-level DP shares the same drawback

as CDP: it allows sensitive data to be leaked to the untrusted server. In contrast to the centralized
models of CDP and client-level DP, this work imposes the stronger requirement that client updates be
private before they are sent to the untrusted server (or other clients) for aggregation.

First, we consider local differential privacy (LDP), a generalization of the the classic notion with
the same name [44] to FL. An R-round fully interactive randomized algorithm A : X Ñ ZRˆN

for FL is characterized in every round r P rRs by N local client functions called randomizers
Rpiq

r : Zpr´1qˆN ˆ Xni
i Ñ Z (i P rN s) and an aggregation mechanism. The randomizers send

messages Zpiq
r :“ Rpiq

r pZ1:r´1, Xiq (which may depend on client data Xi and the outputs Z1:r´1 :“
tZpjq

t ujPrNs,tPrr´1s of clients’ randomizers in prior rounds) to the server or (in peer-to-peer FL) other
clients. 1 Then, the server (or clients, for peer-to-peer FL) updates the global model. Algorithm A is
tp✏i, �iquNi“1-LDP if for all i P rN s, the full transcript of client i’s communications, i.e. the collection

1We assume that Rpiq
r pZ1:r´1, Xiq is conditionally independent of Xj (j ‰ i) given Z1:r´1 and Xi. That

is, the randomizers of i cannot “eavesdrop” on another client’s data (consistent with the local data principle of
FL). We allow for Zpiq

t to be empty/zero if client i does not output anything to the server in round t.
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of all R messages tZpiq
r urPrRs, is p✏i, �iq-DP, conditional on the messages and data of all other clients.

See Fig. 1. 2 More precisely:
Definition 2. (Local Differential Privacy) A randomized algorithm A : Xn1

1 ˆ¨ ¨ ¨ˆXnN
N Ñ ZRˆN

is tp✏i, �iquNi“1-LDP if for all i P rN s and all ⇢i-adjacent Xi, X
1
i P Xni

i , we have

pRpiq
1 pXiq,Rpiq

2 pZ1, Xiq, ¨ ¨ ¨ ,Rpiq
R pZ1:R´1, Xiqq »

p✏i,�iq
pRpiq

1 pX 1
iq,Rpiq

2 pZ1
1, X

1
iq, ¨ ¨ ¨ ,Rpiq

R pZ1
1:R´1, X

1
iqq,

where for all r the distribution of Rpiq
r pZ1:r´1, Xiq is conditional on the transcripts Zpj‰iq

1:r´1 of all other
clients in all previous rounds. Here ⇢i : X 2

i Ñ r0,8q is given by ⇢ipXi, X
1
iq “ ∞ni

j“1 xi,j‰x1
i,j

.
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Figure 1: LDP protects the privacy of each
client’s data regardless of whether the server
or other clients are trustworthy and regardless
of the network topology (e.g. peer-to-peer or
server-orchestrated). The messages Zpiq

1:R of
client i are DP, ensuring that client i’s data
cannot be leaked, even if the server or other
clients are curious or leak data themselves.

We sometimes assume for simplicity that privacy parame-
ters are the same across clients and denote these common
parameters by p✏0, �0q. Note that LDP is stronger than
CDP: p✏0, �0q-LDP implies p✏0, �0q-CDP but the converse
is false. Moreover, LDP is stronger than client-level DP in
the following sense: p✏0, �0q-LDP implies pn✏, nepn´1q✏

�q
client-level DP, but p✏, �q-client-level DP does not imply
p✏1

, �
1q-LDP for any ✏

1
, �

1. See Appendix C for proofs.

It is also illuminating to compare Definition 2 with classi-
cal item-level LDP [44, 18], which requires each individ-
ual person (rather than client) to randomize their own data.
When n “ 1, so that each client has just one person’s data,
classical LDP is equivalent to Definition 2. But if n ° 1,
then classical LDP would require each person (e.g. patient)
to randomize her reports (e.g. medical test results) before
sending them to the data collector (doctors/researchers)
within the client (hospital). Since we assume in FL that clients can be trusted with their own data, this
intra-client randomization is practically unnecessary. Thus, Definition 2 is more practically relevant
for FL than classical item-level LDP, and it results in higher accuracy models.

An intermediate trust model between the low-trust local model and the high-trust central/client-level
model is the shuffle model [10, 14, 21, 22, 25, 50, 32] where clients have access to a secure shuffler
(also known as a mixnet) that receives randomized reports from the clients and randomly permutes
them (effectively anonymizing them), before the reports are sent to the untrusted server/other clients.3

Definition 3. (Shuffle Differential Privacy) A randomized algorithm A : Xn1
1 ˆ¨ ¨ ¨ˆXnN

N Ñ ZNˆR

is p✏, �q-shuffle DP (SDP) if for all ⇢-adjacent databases X,X1 P Xn1
1 ˆ¨ ¨ ¨ˆXnN

N and all measurable
subsets S, the collection of all uniformly randomly permuted messages that are sent by the shuffler
satisfies (3), with ⇢pX,X1q :“ ∞N

i“1

∞ni

j“1 xi,j‰x1
i,j

(same ⇢ as CDP).
That is, SDP prohibits the server from viewing non-private functions of clients’ data, instead restricting
clients to randomize their own data and use shuffling. Since p✏0, �0q-LDP implies p✏0, �0q-CDP and
shuffling can be seen as post-processing, it follows that p✏0, �0q-LDP implies p✏0, �0q-SDP.

Notation and Assumptions: Denote by } ¨ } the Euclidean norm. A differentiable function g :
W Ñ R (W Ñ Rd) is µ-strongly convex (µ • 0) if gpwq • gpw1q ` xrgpw1q, w ´ w

1y ` µ
2 }w ´

w
1}2 @ w,w

1 P W . If µ “ 0, we say g is convex. A function h : W Ñ Rm is L-Lipschitz if
}hpwq ´ hpw1q} § L}w ´ w

1} for all w,w1 P W. h is �-smooth if its derivative rh is �-Lipschitz.
Denote w˚ P argminwPW F pwq. We write a À b if DC ° 0 such that a § Cb. We write a “ rOpbq if
a À logp✓qb for some parameters ✓. We assume the following throughout this work:
Assumption 1. fp¨, xq is Li-Lipschitz and µ-strongly convex (with µ “ 0 for convex) @x P Xi.
Assumption 2. In each round r, a uniformly random subset Sr of Mr P rN s distinct clients can
communicate with the server, where tMrur•0 are i.i.d. random variables with 1

M :“ Ep 1
Mr

q.
Assumption 2 is more realistic and general than existing FL works, which usually assume Mr “ M is
deterministic [40]. Mr is determined by the network and is not a design parameter: Mr is the number

2Ultimately, the algorithm A may output some pw P W that is a function of the client transcripts
pZ1, ¨ ¨ ¨ ,ZRq. By the post-processing property of DP [20, Proposition 2.1], the privacy of pw will be guaranteed
if the client transcripts are DP. Thus, here we simply consider the output of A to be the client transcripts.

3Assume that client reports can be decrypted by the server, but not by the shuffler [21, 25].
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of clients that are able to contribute to global updates in each round, which is not the same as the
number of clients that a given algorithm queries in each round. For example, the one-pass sequential
algorithms of [18, 65] query just Op1q clients in each round, but require Mr “ N to implement since
they dictate exactly which client(s) must communicate with the server in every round and do not
allow any client to contribute more than one report.

Related Work and Our Contributions: Below we discuss the most relevant related work and
describe our main contributions. See Appendix A for additional discussion of related work.

1. Tight minimax risk bounds for LDP Federated SCO with i.i.d. clients and reliable communica-
tion (Theorem D.1, Theorem 2.1, and Theorem 3.1): [18] studied a special case of the i.i.d. (Di “ D)
FL problem with n “ 1 and M “ N , establishing minimax risk bounds for the class of sequentially
interactive ✏0-LDP algorithms and convex, Lipschitz loss functions. We consider the (✏0, �0)-LDP
(�0 ° 0) i.i.d. FL problem in a more general setting where each client has an arbitrary number
of samples (n • 1) and establish tight minimax risk bounds for two Lipschitz function classes–
strongly convex and convex. Crucially, our minmax risk bounds hold with respect to a wider class
of algorithms than that considered by [18]; in addition to sequentially interactive algorithms, our
algorithm class also includes a broad subset of fully interactive algorithms. These risk bounds match
(up to logarithms) the respective non-private rates if d

✏20
À n (“privacy for free”).

2. The first non-trivial upper bound for LDP SCO with non-i.i.d. clients (Theorem 2.2): For the
challenging problem of LDP FL (SCO) with non-i.i.d. client distributions, we develop an accelerated
distributed noisy SGD algorithm based on [30], which runs in linear time and obtains the first
non-trivial risk bound for smooth convex/strongly convex loss. Unsurprisingly, our non-i.i.d. bound
does not match the i.i.d. minimax rate, leading to the open question of what the minimax rate is for
non-i.i.d. LDP FL.

3. Improved communication complexity for LDP Federated ERM, plus matching lower bounds for a
subset of LDP algorithms (Theorem D.2, Theorem 2.3, Section 3 and Theorem E.4): The special
case of problem (2), which we refer to as LDP Federated ERM, has been extensively studied in
recent years [70, 37, 36, 76, 73, 17, 78, 5, 64, 32], but only one of these works, [32], provides an
algorithm that achieves a tight upper bound. [32] focuses primarily on the shuffled model of DP, but
we observe that their algorithm also yields an p✏0, �0q-LDP empirical risk bound for convex loss. We
employ a variation of our accelerated LDP algorithm–combined with Nesterov smoothing [60] in the
non-smooth case–to achieve the same risk bound as [32] in fewer rounds of server communication.
We also address strongly convex ERM. Further, we provide matching lower bounds, implying that
our algorithm is optimal among a subclass of fully interactive LDP algorithms.

4. Achieving the optimal CDP i.i.d. SCO rates without a trusted curator (Theorem 4.1): [32, 21]
showed that the optimal CDP convex federated ERM rate [9] can be attained in the lower trust
(relative to the central model) shuffle model of DP. The concurrent work [13, Theorem 4.9] shows
that when all M “ N clients can communicate in every round and each client has just n “ 1 sample,
the optimal CDP SCO rate can be attained with an SDP algorithm. We show that our algorithm
(with shuffling) attains the optimal CDP SCO rates for clients with any number n • 1 of samples.
In particular, with shuffling, our algorithm is simultaneously optimal in both the local and central
models of DP for i.i.d. FL. We also provide upper bounds for M † N .

In non-private distributed optimization, [51, 68, 58] provide convergence results with random connec-
tivity graphs. Our upper bounds describe the effect of the mean/variance of 1{Mr on DP FL. Tight
lower bounds for DP FL when M † N is an open problem stemming from our work.

Finally, numerical experiments demonstrate the practical performance of our algorithm.

2 Upper Bounds for LDP FL
To simplify the presentation of our results, we will assume that ni “ n, ✏i “ ✏0, �i “ �0, and Li “ L

for all i. Appendix D contains the general versions of these upper bounds and their proofs.

Noisy Minibatch SGD for i.i.d. Clients: Consider the case of i.i.d. clients: Xi “ X , Di “ D for
all i. We derive tight loss bounds via Algorithm 1 (Appendix D.2), an LDP version of distributed
minibatch SGD (MB-SGD). In each round r, all Mr available clients send noisy stochastic gradients
to the server: rgir :“ 1

Ki

∞Ki

j“1 rfpwr, x
r
i,jq ` ui, where ui „ Np0,�2

i Idq and txi,jujPrKis are
drawn uniformly from Xi (and then replaced). The server averages these Mr reports, updates
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wr`1 :“ ⇧W rwr ´ ⌘r

Mr

∞
iPSr

rgirs and reports wr`1 to all N clients. Algorithm 1 can also be seen as
a distributed version of [8, Algorithm 1]. We now give privacy and excess population loss guarantees
for Algorithm 1, run with �

2
i :“ 256L2R lnp2.5R{�0q lnp2{�0q

n2✏20
:

Theorem 2.1. [Informal] Assume ✏0 § lnp2{�0q and choose K • ✏0n

4
?

2R lnp2{�0q . Then

Algorithm 1 is p✏0, �0q-LDP. Further, there exists � ° 0 such that running Algorithm 1 on
f�pwq :“ minvPW

´
fpvq ` �

2 }w ´ v}2
¯

yields:

1. (Convex) Setting R “ M min
!
n,

✏20n
2

d

)
yields

EF p pwRq ´ F pw˚q “ rO
˜

LD?
M

˜
1?
n

`
a
d lnp2{�0q
✏0n

¸¸
. (4)

2. (µ-strongly convex) Setting R “ M min
!
n,

✏20n
2

d

)
ln

´
D2µ2M2✏20n

3

dL2

¯
yields

EF p pwRq ´ F pw˚q “ rO
ˆ

L
2

µM

ˆ
1
n

` d lnp2{�0q
✏20n

2

˙˙
. (5)

We will see (Section 3) that these upper bounds are tight up to logarithmic factors when M “ N ,
implying that Algorithm 1 is optimal among a large class of fully interactive LDP algorithms. Further,
if M “ N and d

✏20
À n, then both of these upper bounds match (up to logarithms) the respective

non-private lower bounds for SCO (“privacy for free”) [59, 3, 34]. The proof of Theorem 2.1
uses the corresponding smooth result Theorem D.1 in the Appendix and Nesterov smoothing [60].
Theorem D.1 is proved by bounding the empirical loss and using a uniform stability [11] argument,
similar to how [8] proceeded for the case N “ 1.

One-pass Accelerated Noisy Distributed SGD for Non-i.i.d. Clients: Consider the general non-
i.i.d. FL problem, where Fipwq takes the general form (1) for some unknown distributions Di on Xi

(i P rN s). The uniform stability approach that we used to obtain our i.i.d. upper bounds does not
work in this setting. 4 Instead, we directly minimize F by modifying Algorithm 1 as follows:
1. We draw K :“ 1 local samples without replacement and set R :“ n. Thus, each sample is used at
most one time during the algorithm, so that the bounds we obtain apply to F.

2. We use acceleration to increase the convergence rate.
3. To provide LDP, we use Gaussian noise with larger variance �

2 “ 8L2 lnp1.25{�0q
✏20

.

We call this algorithm One-pass Accelerated Noisy Distributed SGD. It is an instantiation of
Accelerated Noisy MB-SGD, described in Algorithm 2 (Appendix D.4). Algorithm 2 is a noisy LDP
version of the accelerated MB-SGD of [30], which was analyzed in the distributed setting by [75].
Theorem 2.2. [Informal] Let fp¨, xq be �-smooth for all x P X . Assume ✏0 § 1. Then One-pass
Accelerated Noisy Distributed SGD is p✏0, �0q-LDP. Moreover:
1. If fp¨, xq is convex, then

EF p pwRq ´ F pw˚q “ O

˜
�D

2

n2
` LD

a
d lnp1{�0q

✏0

?
Mn

¸
. (6)

2. If fp¨, xq is µ-strongly convex, then

EF p pwRq ´ F pw˚q “ O

ˆ
LD exp

ˆ
´

c
µ

�
n

˙
` L

2

µ

d lnp1{�0q
✏20Mn

˙
. (7)

This upper bound is looser than the optimal bounds of Theorem D.1 (yet the tightest known bound
for non-i.i.d. LDP FL), leaving open the question of what the optimal rate is for non-i.i.d. LDP FL.

Accelerated Noisy MB-SGD for Federated ERM: With non-random Mr “ M , [32] provides an
upper bound for convex LDP ERM that nearly matches the one we provide below.5 We use an
accelerated LDP algorithm, Algorithm 2 (Appendix D.4), which achieves the upper bounds for
convex and strongly convex loss in fewer rounds of communications than [32]. Unlike the one-pass
version of Algorithm 2 used for non-i.i.d. FL, here we sample local minibatches from each client
with replacement to get tighter (in fact, optimal) bounds. Here we present just the non-smooth result:

4Specifically, Lemma D.1 in the Appendix does not apply without the i.i.d. assumption.
5The bound in [32] is looser than the bound in (35) by logarithmic factor.
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Theorem 2.3. [Informal] Assume ✏0 § lnp2{�0q and choose K • ✏0n

4
?

2R lnp2{�0q . Then Algo-

rithm 2 is p✏0, �0q-LDP. Further, there is � ° 0 such that running Algorithm 2 on f�pwq :“
minvPW

´
fpvq ` �

2 }w ´ v}2
¯

yields the following bounds on the excess empirical loss (w.r.t. f ):

1. (Convex) Setting R “ max

ˆ ?
M✏0n?

d
,
✏20n

2

d

"
1
K if M = N
1 otherwise

˙
yields

E pF p pwRq ´ pF pw˚q “ rO
˜
LD

˜ a
d lnp2{�0q
✏0n

?
M

¸¸
. (8)

2. (µ-strongly convex) Setting R “ max

ˆ ?
M✏0n?

d
ln

´
DµM✏20n

2

Ld

¯
,
✏20n

2

d

"
1
K if M = N
1 otherwise

˙
yields

E pF p pwRq ´ pF pw˚q “ rO
ˆ
L

2

µ

ˆ
d lnp2{�0q
✏20n

2M

˙˙
. (9)

The upper bounds in Theorem 2.3 match (up to logarithms) the lower bounds in Theorem E.4 when
M “ N , establishing the optimality of Algorithm 2 for convex/strongly convex Federated ERM
among a wide subclass of fully interactive algorithms. The algorithm in [32] was not analyzed for
random Mr. For fixed Mr “ M , their algorithm requires R “ r⌦p✏20n2

M{dq communication rounds
to attain (8), making Algorithm 2 faster by a factor of minp

?
M✏0n{

?
d,Mq.

3 Lower Bounds for LDP FL
We provide tight lower bounds on the excess population/empirical loss of LDP algorithms for the
federated SCO/ERM problems when M “ N . As a consequence, Algorithm 1 and Algorithm 2
are minimax optimal for i.i.d. SCO and ERM respectively, for two function classes: FL,D :“
tf : W ˆ X Ñ Rd | @x P X fp¨, xq is convex, L-Lipschitz, and W Ñ B2p0, Dqu; and Gµ,L,D :“
tf P FL,D | @x P X fp¨, xq is µ-strongly convexu. For SCO, the p✏0, �0q-LDP algorithm class
Ap✏0,�0q “ A that we consider contains all sequentially interactive algorithms, as well as fully
interactive algorithms that are compositional (c.f. [39]):
Definition 4. Let A be an R-round p✏0, �0q-LDP FL algorithm with data domain X . Let tp✏0r, �0rquRr“1

denote the minimal (non-negative) parameters of the local randomizers Rpiq
r selected at round r

(r P rRs) such that Rpiq
r pZp1:r´1q, ¨q : Xn Ñ Z is p✏0r, �0rq-DP for all i P rN s and all Zp1:r´1q P

Zpr´1qN
. For an absolute constant C ° 0, we say that A is C-compositional if

b∞
rPrRsp✏r0q2 §

C✏0. If such a C exists, we simply say A is compositional.

Any p✏0, �0q-LDP A has ✏
r
0 § ✏0. The vast majority of p✏0, �0q-LDP algorithms studied in the

literature satisfy Definition 4. For example, any algorithm that uses the strong composition theorems
of [20, Thm. 3.20] or [41] for its privacy analysis is 1-compositional. In particular, the three
algorithms presented in Section 2 are 1-compositional, hence they are in A. See also Appendix E.1.
Theorem 3.1. Let n, d,N,R P N, ✏0 P p0,

?
N s, �0 P p0, 1q and A P Ap✏0,�0q such that in

every round r P rRs, the local randomizers Rpiq
r pZp1:r´1q, ¨q : Xn Ñ Z are p✏r0, �r0q-DP for all

i P rN s, Zp1:r´1q P Zr´1ˆN , with ✏
r
0 § 1

n , and N • 16 lnp2{�min
0 nq, where �

min
0 :“ minr �r0 .

If A is if A is sequentially interactive, assume �0 “ op1{n2
N

2q; if A is compositional, assume∞
r �

r
0 “ op1{n2

N
2q instead. Then there exists a �-smooth (@� • 0) loss f P FL,D and a

distribution D on a set X such that if the local data sets are drawn i.i.d. Xi „ Dn, then:

EF pApXqq ´ F pw˚q “ r⌦
ˆ
LD

ˆ
1?
Nn

` min

"
1,

?
d

✏0n
?
N

*˙˙
. (10)

Furthermore, there exists another (µ-smooth) f P Gµ,L,D and distribution D such that

EF pApXqq ´ F pw˚q “ r⌦
ˆ

L
2

µnN
` LDmin

"
1,

d

✏20n
2N

*˙
. (11)

These lower bounds are essentially tight 6 by Theorem 2.1. The first term in each of the lower bounds
is the optimal non-private rate; the second parts of the bounds are what we prove in Appendix E.2.

6Up to logarithms, and for strongly convex case–a factor of µD{L. If d ° ✏
2
0n

2
N , then the trivial algorithm

attains the matching upper bound OpLDq.
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Theorem 3.1 is more generally applicable than the lower bound in [18, Proposition 3] (for the L2

setting), which only applies to sequentially interactive algorithms and databases with n “ 1 sample
per client. As in [18], our lower bounds hold for sufficiently private LDP algorithms–those for which
the privacy loss on each client in each round ✏

r
0 À 1{n 7. For n “ 1, ✏r0 À 1{n “ 1 is also required in

[18, Proposition 3] since they consider sequential algorithms, where ✏
r
0 “ ✏0. Also, the assumptions

on �0, �
r
0 are not very restrictive in practice; see Remark E.1. For federated ERM, we prove a tight

lower bound in Theorem E.4, establishing the optimality of Algorithm 2 for a class B Ä A.

4 Optimal Algorithm for Shuffle DP FL
Assume access to a secure shuffler and fix Mr “ M P rN s. In each round r, the shuffler receives the
reports pZp1q

r , ¨ ¨ ¨ZpMq
r q from active clients (we assume Sr “ rM s here for concreteness), draws a

uniformly random permutation of rM s, ⇡, and then sends pZp⇡p1qq
r , ¨ ¨ ¨ , Zp⇡pMqq

r q to the server for
aggregation. We show that this “shuffled version” of Algorithm 1 achieves the optimal convex/strongly
convex CDP bounds for i.i.d. SCO when M “ N , even with the weaker trust assumptions of the
shuffle model:
Theorem 4.1. Let f : W ˆ X Ñ Rd be �-smooth, ✏ § lnp2{�q, � P p0, 1q, and
M • 16 lnp18RM

2{N�q for R specified below. Then DC ° 0 such that �
2
i :“

CL2RM lnpRM2{N�q lnpR{�q lnp1{�q
n2N2✏2 ensures that the shuffled Algorithm 1 is p✏, �q-CDP @K P rns.

Further:
1. (Convex) Setting R :“ max

´
n2N2✏2

M ,
N
M , min

!
n,

✏2n2N2

dM

)
,
�D
L min

!?
nM,

✏nN?
d

)¯
yields

EF p pwRq ´ F pw˚q “ O

˜
LD

˜
1?
nM

`
a
d lnp1{�q
✏nN

¸¸
. (12)

2. (Strongly convex) R :“ max
´

n2N2✏2

M ,
N
M ,

8�
µ ln

´
�D2µ✏2n2N2

dL2

¯
,min

!
n,

✏2n2N2

dM

)¯
yields

EF p pwRq ´ F pw˚q “ rO
ˆ
L

2

µ

ˆ
1

nM
` d lnp1{�q

✏2n2N2

˙˙
. (13)

Together with our LDP results, Theorem 4.1 implies that, with shuffling, Algorithm 1 is simultaneously
optimal for i.i.d. FL in the local and central models of DP if M “ N . Nesterov smoothing can be
used to obtain the same bounds without the �-smoothness assumption, similar to how we proceeded
for Theorem 2.1. We omit the details here.

5 Numerical Experiments
Linear Regression with Health Insurance Data: We divide the data set [15] into N heterogeneous
groups based on the level of the target (medical charges). See Appendix G.1 for additional details.
Fig. 2 shows that LDP MB-SGD outperforms LDP Local SGD across all privacy levels. Also, as
✏ Ò 10, the price of LDP shrinks towards 0. Here, �2

˚ describes the amount of heterogeneity between
clients’ data (increasing with heterogeneity); see Appendix D.1 for the precise definition.

Figure 2: Test error vs. ✏ for linear regression on heterogeneous health insurance data. We display 90% error
bars over the 20 trials (train/test splits). � “ 1{n2; n “ 1070{N is the number of training examples per client.

Logistic Regression with MNIST: See Appendix G for experiments with M † N . Algorithm 1 still
uniformly outperform LDP Local SGD and even outperforms non-private Local SGD for ✏ • 12.5.

7If there are N “ Op1q clients, then existing CDP lower bounds [8] apply and match our LDP upper bounds
as long as ✏0 À 1; thus, this restriction on ✏

r
0 disappears if N “ Op1q.
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