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Abstract

This paper studies the problem of federated learning (FL) in the absence of a trust-
worthy server/clients. In this setting, each client needs to ensure the privacy of its
own data without relying on the server or other clients. We study local differential
privacy (LDP) at the client level and provide tight upper and lower bounds that
establish the minimax optimal rates (up to logarithms) for LDP convex/strongly
convex federated stochastic optimization. Our rates match the optimal statistical
rates in certain practical parameter regimes (“privacy for free”). Second, we de-
velop a novel time-varying noisy SGD algorithm, leading to the first non-trivial
LDP risk bounds for FL with non-i.i.d. clients. Third, we consider the special
case where each client’s loss function is empirical and develop an accelerated
LDP FL algorithm to improve communication complexity compared to existing
works. We also provide matching lower bounds, establishing the optimality of our
algorithm for convex/strongly convex settings. Fourth, with a secure shuffler to
anonymize client reports (but without a trusted server), our algorithm attains the op-
timal central DP rates for stochastic convex/strongly convex optimization, thereby
achieving optimality in the local and central models simultaneously. Our upper
bounds quantify the role of network communication reliability in performance. We
illustrate the practical utility of our algorithm with numerical experiments.

1 Introduction
In federated learning, each “client” (e.g. cell-phone users or organizations such as hospitals) stores
its data locally and a central server coordinates updates to achieve the global learning objective [40].
Federated learning (FL) has been deployed across application domains such as the internet of things
[61], wireless communication [55], medicine [16], finance [1], and by companies such as Google
[63] and Apple [4]. One of the primary reasons for the introduction of FL was to offer greater privacy
for sensitive user data [54]. Unfortunately, merely storing data locally is not sufficient to prevent data
leakage, as model parameters or updates can still reveal sensitive information [27, 35, 66, 80]. These
leaks can occur when clients send updates to the server, which an adversary may be able to access,
or (in decentralized/peer-to-peer FL) directly to other clients. Therefore, it is important to develop
privacy-preserving mechanisms for FL that do not rely on the server or other clients to implement.

Consider a FL setting with N clients, each containing a local data set with ni samples: Xi “

pxi,1, ¨ ¨ ¨ , xi,niq for i P rN s. In each round of communication r, a uniformly random subset Sr of
Mr P rN s clients is able to participate, where tMru

R
r“1 are i.i.d. random variables. For all i, let Di

be a probability distribution on a set Xi containing data and denote X :“
ŤN
i“1 Xi. Given a convex

(in w) loss function f :W ˆ X Ñ R, define client i’s local objective as
Fipwq :“ Exi„Dirfpw, xiqs, (1)

whereW Ă Rd is closed, convex, and }w}2 ď D, @w P W . At times, we may focus on empirical
risk minimization (ERM) framework where pFipwq :“ 1

ni

řni
j“1 fpw, xi,jq. Our goal is to solve
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min
wPW

#

F pwq :“
N
ÿ

i“1

piFipwq

+

, (2)

or, in the ERM case, minwPWt pF pwq :“
řN
i“1 pi

pFipwqu, while maintaining the privacy of each
client. Here pi ě 0 with

ř

i pi “ 1. We assume WLOG (see Appendix B) that pi “ 1
N , @i P rN s.

We say problem (2) is “i.i.d.” if Xi “ X and Di “ D @i. When Fi takes the general form (1) (not
necessarily ERM), we refer to the problem as “SCO” (stochastic convex optimization) for emphasis.

Popular algorithms for FL include Local SGD/Federated Averaging [55] and Minibatch SGD. Both
of these are fully interactive algorithms, meaning they can adaptively query each client multiple
times. A subset of fully interactive algorithms is the set of sequentially interactive algorithms,
which can query clients adaptively in sequence, but cannot query any one client more than once.
Non-interactive algorithms are non-adaptive sequentially interactive algorithms: they query each
client once, independently of other clients’ reports. See [39] for further discussion.

Notions of Privacy for FL: Given the practical importance of maintaining the privacy of user data
during the FL process, numerous different definitions of private FL have been proposed. Some
of these have used secure multi-party computation (MPC) [12, 53], but this approach leaves users
vulnerable to inference attacks on the trained model. This is in contrast to differential privacy (DP),
which by now has been widely accepted as the gold standard of rigorous data privacy notions. DP
is defined with respect to a database space X and a measure of distance ρ : X2 Ñ r0,8q between
databases. We say two databases X,X1 P X are ρ-adjacent if ρpX,X1q ď 1.

Definition 1. (Differential Privacy) Let ε ě 0, δ P r0, 1q. A randomized algorithm A : XÑW is
pε, δq-differentially private (DP) if for all ρ-adjacent data sets X,X1 P X and all measurable subsets
S ĂW , we have

PpApXq P Sq ď eεPpApX1q P Sq ` δ. (3)

If (3) holds for all measurable subsets S, then we denote this property by ApXq »
pε,δq

ApX1q. For

FL, we will fix X :“ Xn1
1 ˆ ¨ ¨ ¨ ˆ XnNN so that databases X in our FL setting consist of N client

datasets X “ pX1, ¨ ¨ ¨XN q. Definition 1 says that an algorithm is DP if with high probability,
an adversary cannot distinguish between the outputs of the algorithm when it is run on adjacent
databases. Depending on the choice of ρ, we can get different variations of DP. For example, in
the classical notion of central differential privacy (CDP) (often simply referred to as “differential
privacy”) [19], ρpX,X1q :“

řN
i“1

řni
j“1 1xi,j‰x

1
i,j

is the hamming distance and adjacent databases
are those differing in a single sample. In the context of FL, a major problem with CDP is that it does
not preclude the untrusted server from accessing non-private updates (which may leak clients’ data).

Client-level DP (also called user-level DP) has been proposed as an alternative to CDP where a single
person may contribute many samples to the database (e.g. language modeling) [55, 29, 38, 28, 72, 79,
47]. It is defined by taking ρpX,X1q “

řN
i“1 1Xi‰X

1
i
. Client-level DP shares the same drawback

as CDP: it allows sensitive data to be leaked to the untrusted server. In contrast to the centralized
models of CDP and client-level DP, this work imposes the stronger requirement that client updates be
private before they are sent to the untrusted server (or other clients) for aggregation.

First, we consider local differential privacy (LDP), a generalization of the the classic notion with
the same name [44] to FL. An R-round fully interactive randomized algorithm A : X Ñ ZRˆN
for FL is characterized in every round r P rRs by N local client functions called randomizers
Rpiqr : Zpr´1qˆN ˆ Xnii Ñ Z (i P rN s) and an aggregation mechanism. The randomizers send
messages Zpiqr :“ Rpiqr pZ1:r´1, Xiq (which may depend on client data Xi and the outputs Z1:r´1 :“

tZ
pjq
t ujPrNs,tPrr´1s of clients’ randomizers in prior rounds) to the server or (in peer-to-peer FL) other

clients. 1 Then, the server (or clients, for peer-to-peer FL) updates the global model. Algorithm A is
tpεi, δiqu

N
i“1-LDP if for all i P rN s, the full transcript of client i’s communications, i.e. the collection

1We assume that Rpiqr pZ1:r´1, Xiq is conditionally independent of Xj (j ‰ i) given Z1:r´1 and Xi. That
is, the randomizers of i cannot “eavesdrop” on another client’s data (consistent with the local data principle of
FL). We allow for Zpiqt to be empty/zero if client i does not output anything to the server in round t.
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of all R messages tZpiqr urPrRs, is pεi, δiq-DP, conditional on the messages and data of all other clients.
See Fig. 1. 2 More precisely:

Definition 2. (Local Differential Privacy) A randomized algorithmA : Xn1
1 ˆ¨ ¨ ¨ˆXnNN Ñ ZRˆN

is tpεi, δiquNi“1-LDP if for all i P rN s and all ρi-adjacent Xi, X
1
i P X

ni
i , we have

pRpiq1 pXiq,R
piq
2 pZ1, Xiq, ¨ ¨ ¨ ,RpiqR pZ1:R´1, Xiqq »

pεi,δiq
pRpiq1 pX

1
iq,Rpiq2 pZ

1
1, X

1
iq, ¨ ¨ ¨ ,RpiqR pZ

1
1:R´1, X

1
iqq,

where for all r the distribution ofRpiqr pZ1:r´1, Xiq is conditional on the transcripts Zpj‰iq1:r´1 of all other
clients in all previous rounds. Here ρi : X 2

i Ñ r0,8q is given by ρipXi, X
1
iq “

řni
j“1 1xi,j‰x

1
i,j

.
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Figure 1: LDP protects the privacy of each
client’s data regardless of whether the server
or other clients are trustworthy and regardless
of the network topology (e.g. peer-to-peer or
server-orchestrated). The messages Zpiq1:R of
client i are DP, ensuring that client i’s data
cannot be leaked, even if the server or other
clients are curious or leak data themselves.

We sometimes assume for simplicity that privacy parame-
ters are the same across clients and denote these common
parameters by pε0, δ0q. Note that LDP is stronger than
CDP: pε0, δ0q-LDP implies pε0, δ0q-CDP but the converse
is false. Moreover, LDP is stronger than client-level DP in
the following sense: pε0, δ0q-LDP implies pnε, nepn´1qεδq
client-level DP, but pε, δq-client-level DP does not imply
pε1, δ1q-LDP for any ε1, δ1. See Appendix C for proofs.

It is also illuminating to compare Definition 2 with classi-
cal item-level LDP [44, 18], which requires each individ-
ual person (rather than client) to randomize their own data.
When n “ 1, so that each client has just one person’s data,
classical LDP is equivalent to Definition 2. But if n ą 1,
then classical LDP would require each person (e.g. patient)
to randomize her reports (e.g. medical test results) before
sending them to the data collector (doctors/researchers)
within the client (hospital). Since we assume in FL that clients can be trusted with their own data, this
intra-client randomization is practically unnecessary. Thus, Definition 2 is more practically relevant
for FL than classical item-level LDP, and it results in higher accuracy models.

An intermediate trust model between the low-trust local model and the high-trust central/client-level
model is the shuffle model [10, 14, 21, 22, 25, 50, 32] where clients have access to a secure shuffler
(also known as a mixnet) that receives randomized reports from the clients and randomly permutes
them (effectively anonymizing them), before the reports are sent to the untrusted server/other clients.3

Definition 3. (Shuffle Differential Privacy) A randomized algorithmA : Xn1
1 ˆ¨ ¨ ¨ˆXnNN Ñ ZNˆR

is pε, δq-shuffle DP (SDP) if for all ρ-adjacent databases X,X1 P Xn1
1 ˆ¨ ¨ ¨ˆXnNN and all measurable

subsets S, the collection of all uniformly randomly permuted messages that are sent by the shuffler
satisfies (3), with ρpX,X1q :“

řN
i“1

řni
j“1 1xi,j‰x

1
i,j

(same ρ as CDP).
That is, SDP prohibits the server from viewing non-private functions of clients’ data, instead restricting
clients to randomize their own data and use shuffling. Since pε0, δ0q-LDP implies pε0, δ0q-CDP and
shuffling can be seen as post-processing, it follows that pε0, δ0q-LDP implies pε0, δ0q-SDP.

Notation and Assumptions: Denote by } ¨ } the Euclidean norm. A differentiable function g :

W Ñ R (W Ď Rd) is µ-strongly convex (µ ě 0) if gpwq ě gpw1q ` x∇gpw1q, w ´ w1y ` µ
2 }w ´

w1}2 @ w,w1 P W. If µ “ 0, we say g is convex. A function h : W Ñ Rm is L-Lipschitz if
}hpwq ´ hpw1q} ď L}w ´ w1} for all w,w1 PW. h is β-smooth if its derivative ∇h is β-Lipschitz.
Denote w˚ P argminwPW F pwq. We write a À b if DC ą 0 such that a ď Cb. We write a “ rOpbq if
a À logpθqb for some parameters θ. We assume the following throughout this work:
Assumption 1. fp¨, xq is Li-Lipschitz and µ-strongly convex (with µ “ 0 for convex) @x P Xi.
Assumption 2. In each round r, a uniformly random subset Sr of Mr P rN s distinct clients can
communicate with the server, where tMrurě0 are i.i.d. random variables with 1

M :“ Ep 1
Mr
q.

Assumption 2 is more realistic and general than existing FL works, which usually assumeMr “M is
deterministic [40]. Mr is determined by the network and is not a design parameter: Mr is the number

2Ultimately, the algorithm A may output some pw P W that is a function of the client transcripts
pZ1, ¨ ¨ ¨ ,ZRq. By the post-processing property of DP [20, Proposition 2.1], the privacy of pw will be guaranteed
if the client transcripts are DP. Thus, here we simply consider the output of A to be the client transcripts.

3Assume that client reports can be decrypted by the server, but not by the shuffler [21, 25].
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of clients that are able to contribute to global updates in each round, which is not the same as the
number of clients that a given algorithm queries in each round. For example, the one-pass sequential
algorithms of [18, 65] query just Op1q clients in each round, but require Mr “ N to implement since
they dictate exactly which client(s) must communicate with the server in every round and do not
allow any client to contribute more than one report.

Related Work and Our Contributions: Below we discuss the most relevant related work and
describe our main contributions. See Appendix A for additional discussion of related work.

1. Tight minimax risk bounds for LDP Federated SCO with i.i.d. clients and reliable communica-
tion (Theorem D.1, Theorem 2.1, and Theorem 3.1): [18] studied a special case of the i.i.d. (Di “ D)
FL problem with n “ 1 and M “ N , establishing minimax risk bounds for the class of sequentially
interactive ε0-LDP algorithms and convex, Lipschitz loss functions. We consider the (ε0, δ0)-LDP
(δ0 ą 0) i.i.d. FL problem in a more general setting where each client has an arbitrary number
of samples (n ě 1) and establish tight minimax risk bounds for two Lipschitz function classes–
strongly convex and convex. Crucially, our minmax risk bounds hold with respect to a wider class
of algorithms than that considered by [18]; in addition to sequentially interactive algorithms, our
algorithm class also includes a broad subset of fully interactive algorithms. These risk bounds match
(up to logarithms) the respective non-private rates if d

ε20
À n (“privacy for free”).

2. The first non-trivial upper bound for LDP SCO with non-i.i.d. clients (Theorem 2.2): For the
challenging problem of LDP FL (SCO) with non-i.i.d. client distributions, we develop an accelerated
distributed noisy SGD algorithm based on [30], which runs in linear time and obtains the first
non-trivial risk bound for smooth convex/strongly convex loss. Unsurprisingly, our non-i.i.d. bound
does not match the i.i.d. minimax rate, leading to the open question of what the minimax rate is for
non-i.i.d. LDP FL.

3. Improved communication complexity for LDP Federated ERM, plus matching lower bounds for a
subset of LDP algorithms (Theorem D.2, Theorem 2.3, Section 3 and Theorem E.4): The special
case of problem (2), which we refer to as LDP Federated ERM, has been extensively studied in
recent years [70, 37, 36, 76, 73, 17, 78, 5, 64, 32], but only one of these works, [32], provides an
algorithm that achieves a tight upper bound. [32] focuses primarily on the shuffled model of DP, but
we observe that their algorithm also yields an pε0, δ0q-LDP empirical risk bound for convex loss. We
employ a variation of our accelerated LDP algorithm–combined with Nesterov smoothing [60] in the
non-smooth case–to achieve the same risk bound as [32] in fewer rounds of server communication.
We also address strongly convex ERM. Further, we provide matching lower bounds, implying that
our algorithm is optimal among a subclass of fully interactive LDP algorithms.

4. Achieving the optimal CDP i.i.d. SCO rates without a trusted curator (Theorem 4.1): [32, 21]
showed that the optimal CDP convex federated ERM rate [9] can be attained in the lower trust
(relative to the central model) shuffle model of DP. The concurrent work [13, Theorem 4.9] shows
that when all M “ N clients can communicate in every round and each client has just n “ 1 sample,
the optimal CDP SCO rate can be attained with an SDP algorithm. We show that our algorithm
(with shuffling) attains the optimal CDP SCO rates for clients with any number n ě 1 of samples.
In particular, with shuffling, our algorithm is simultaneously optimal in both the local and central
models of DP for i.i.d. FL. We also provide upper bounds for M ă N .

In non-private distributed optimization, [51, 68, 58] provide convergence results with random connec-
tivity graphs. Our upper bounds describe the effect of the mean/variance of 1{Mr on DP FL. Tight
lower bounds for DP FL when M ă N is an open problem stemming from our work.

Finally, numerical experiments demonstrate the practical performance of our algorithm.

2 Upper Bounds for LDP FL
To simplify the presentation of our results, we will assume that ni “ n, εi “ ε0, δi “ δ0, and Li “ L
for all i. Appendix D contains the general versions of these upper bounds and their proofs.

Noisy Minibatch SGD for i.i.d. Clients: Consider the case of i.i.d. clients: Xi “ X , Di “ D for
all i. We derive tight loss bounds via Algorithm 1 (Appendix D.2), an LDP version of distributed
minibatch SGD (MB-SGD). In each round r, all Mr available clients send noisy stochastic gradients
to the server: rgir :“ 1

Ki

řKi
j“1∇fpwr, xri,jq ` ui, where ui „ Np0, σ2

i Idq and txi,jujPrKis are
drawn uniformly from Xi (and then replaced). The server averages these Mr reports, updates
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wr`1 :“ ΠW rwr ´
ηr
Mr

ř

iPSr
rgirs and reports wr`1 to all N clients. Algorithm 1 can also be seen as

a distributed version of [8, Algorithm 1]. We now give privacy and excess population loss guarantees
for Algorithm 1, run with σ2

i :“ 256L2R lnp2.5R{δ0q lnp2{δ0q
n2ε20

:

Theorem 2.1. [Informal] Assume ε0 ď lnp2{δ0q and choose K ě ε0n

4
?

2R lnp2{δ0q
. Then

Algorithm 1 is pε0, δ0q-LDP. Further, there exists β ą 0 such that running Algorithm 1 on

fβpwq :“ minvPW

´

fpvq ` β
2 }w ´ v}

2
¯

yields:

1. (Convex) Setting R “M min
!

n,
ε20n

2

d

)

yields

EF p pwRq ´ F pw˚q “ rO

˜

LD
?
M

˜

1
?
n
`

a

d lnp2{δ0q

ε0n

¸¸

. (4)

2. (µ-strongly convex) Setting R “M min
!

n,
ε20n

2

d

)

ln
´

D2µ2M2ε20n
3

dL2

¯

yields

EF p pwRq ´ F pw˚q “ rO

ˆ

L2

µM

ˆ

1

n
`
d lnp2{δ0q

ε20n
2

˙˙

. (5)

We will see (Section 3) that these upper bounds are tight up to logarithmic factors when M “ N ,
implying that Algorithm 1 is optimal among a large class of fully interactive LDP algorithms. Further,
if M “ N and d

ε20
À n, then both of these upper bounds match (up to logarithms) the respective

non-private lower bounds for SCO (“privacy for free”) [59, 3, 34]. The proof of Theorem 2.1
uses the corresponding smooth result Theorem D.1 in the Appendix and Nesterov smoothing [60].
Theorem D.1 is proved by bounding the empirical loss and using a uniform stability [11] argument,
similar to how [8] proceeded for the case N “ 1.

One-pass Accelerated Noisy Distributed SGD for Non-i.i.d. Clients: Consider the general non-
i.i.d. FL problem, where Fipwq takes the general form (1) for some unknown distributions Di on Xi
(i P rN s). The uniform stability approach that we used to obtain our i.i.d. upper bounds does not
work in this setting. 4 Instead, we directly minimize F by modifying Algorithm 1 as follows:
1. We draw K :“ 1 local samples without replacement and set R :“ n. Thus, each sample is used at
most one time during the algorithm, so that the bounds we obtain apply to F.
2. We use acceleration to increase the convergence rate.
3. To provide LDP, we use Gaussian noise with larger variance σ2 “

8L2 lnp1.25{δ0q
ε20

.

We call this algorithm One-pass Accelerated Noisy Distributed SGD. It is an instantiation of
Accelerated Noisy MB-SGD, described in Algorithm 2 (Appendix D.4). Algorithm 2 is a noisy LDP
version of the accelerated MB-SGD of [30], which was analyzed in the distributed setting by [75].
Theorem 2.2. [Informal] Let fp¨, xq be β-smooth for all x P X . Assume ε0 ď 1. Then One-pass
Accelerated Noisy Distributed SGD is pε0, δ0q-LDP. Moreover:
1. If fp¨, xq is convex, then

EF p pwRq ´ F pw˚q “ O

˜

βD2

n2
`
LD

a

d lnp1{δ0q

ε0
?
Mn

¸

. (6)

2. If fp¨, xq is µ-strongly convex, then

EF p pwRq ´ F pw˚q “ O

ˆ

LD exp

ˆ

´

c

µ

β
n

˙

`
L2

µ

d lnp1{δ0q

ε20Mn

˙

. (7)

This upper bound is looser than the optimal bounds of Theorem D.1 (yet the tightest known bound
for non-i.i.d. LDP FL), leaving open the question of what the optimal rate is for non-i.i.d. LDP FL.

Accelerated Noisy MB-SGD for Federated ERM: With non-random Mr “ M , [32] provides an
upper bound for convex LDP ERM that nearly matches the one we provide below.5 We use an
accelerated LDP algorithm, Algorithm 2 (Appendix D.4), which achieves the upper bounds for
convex and strongly convex loss in fewer rounds of communications than [32]. Unlike the one-pass
version of Algorithm 2 used for non-i.i.d. FL, here we sample local minibatches from each client
with replacement to get tighter (in fact, optimal) bounds. Here we present just the non-smooth result:

4Specifically, Lemma D.1 in the Appendix does not apply without the i.i.d. assumption.
5The bound in [32] is looser than the bound in (35) by logarithmic factor.
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Theorem 2.3. [Informal] Assume ε0 ď lnp2{δ0q and choose K ě ε0n

4
?

2R lnp2{δ0q
. Then Algo-

rithm 2 is pε0, δ0q-LDP. Further, there is β ą 0 such that running Algorithm 2 on fβpwq :“

minvPW

´

fpvq ` β
2 }w ´ v}

2
¯

yields the following bounds on the excess empirical loss (w.r.t. f ):

1. (Convex) Setting R “ max

ˆ

?
Mε0n?
d

,
ε20n

2

d

"

1
K if M = N
1 otherwise

˙

yields

E pF p pwRq ´ pF pw˚q “ rO

˜

LD

˜

a

d lnp2{δ0q

ε0n
?
M

¸¸

. (8)

2. (µ-strongly convex) Setting R “ max

ˆ

?
Mε0n?
d

ln
´

DµMε20n
2

Ld

¯

,
ε20n

2

d

"

1
K if M = N
1 otherwise

˙

yields

E pF p pwRq ´ pF pw˚q “ rO

ˆ

L2

µ

ˆ

d lnp2{δ0q

ε20n
2M

˙˙

. (9)

The upper bounds in Theorem 2.3 match (up to logarithms) the lower bounds in Theorem E.4 when
M “ N , establishing the optimality of Algorithm 2 for convex/strongly convex Federated ERM
among a wide subclass of fully interactive algorithms. The algorithm in [32] was not analyzed for
random Mr. For fixed Mr “M , their algorithm requires R “ rΩpε20n

2M{dq communication rounds
to attain (8), making Algorithm 2 faster by a factor of minp

?
Mε0n{

?
d,Mq.

3 Lower Bounds for LDP FL
We provide tight lower bounds on the excess population/empirical loss of LDP algorithms for the
federated SCO/ERM problems when M “ N . As a consequence, Algorithm 1 and Algorithm 2
are minimax optimal for i.i.d. SCO and ERM respectively, for two function classes: FL,D :“
tf : W ˆ X Ñ Rd | @x P X fp¨, xq is convex, L-Lipschitz, andW Ď B2p0, Dqu; and Gµ,L,D :“
tf P FL,D | @x P X fp¨, xq is µ-strongly convexu. For SCO, the pε0, δ0q-LDP algorithm class
Apε0,δ0q “ A that we consider contains all sequentially interactive algorithms, as well as fully
interactive algorithms that are compositional (c.f. [39]):
Definition 4. LetA be anR-round pε0, δ0q-LDP FL algorithm with data domainX . Let tpε0r, δ

0
rqu

R
r“1

denote the minimal (non-negative) parameters of the local randomizers Rpiqr selected at round r
(r P rRs) such that Rpiqr pZp1:r´1q, ¨q : Xn Ñ Z is pε0r, δ

0
rq-DP for all i P rN s and all Zp1:r´1q P

Zpr´1qN . For an absolute constant C ą 0, we say that A is C-compositional if
b

ř

rPrRspε
r
0q

2 ď

Cε0. If such a C exists, we simply say A is compositional.

Any pε0, δ0q-LDP A has εr0 ď ε0. The vast majority of pε0, δ0q-LDP algorithms studied in the
literature satisfy Definition 4. For example, any algorithm that uses the strong composition theorems
of [20, Thm. 3.20] or [41] for its privacy analysis is 1-compositional. In particular, the three
algorithms presented in Section 2 are 1-compositional, hence they are in A. See also Appendix E.1.

Theorem 3.1. Let n, d,N,R P N, ε0 P p0,
?
N s, δ0 P p0, 1q and A P Apε0,δ0q such that in

every round r P rRs, the local randomizers Rpiqr pZp1:r´1q, ¨q : Xn Ñ Z are pεr0, δ
r
0q-DP for all

i P rN s, Zp1:r´1q P Zr´1ˆN , with εr0 ď
1
n , and N ě 16 lnp2{δmin

0 nq, where δmin
0 :“ minr δ

r
0 .

If A is if A is sequentially interactive, assume δ0 “ op1{n2N2q; if A is compositional, assume
ř

r δ
r
0 “ op1{n2N2q instead. Then there exists a β-smooth (@β ě 0) loss f P FL,D and a

distribution D on a set X such that if the local data sets are drawn i.i.d. Xi „ Dn, then:

EF pApXqq ´ F pw˚q “ rΩ

ˆ

LD

ˆ

1
?
Nn

`min

"

1,

?
d

ε0n
?
N

*˙˙

. (10)

Furthermore, there exists another (µ-smooth) f P Gµ,L,D and distribution D such that

EF pApXqq ´ F pw˚q “ rΩ

ˆ

L2

µnN
` LDmin

"

1,
d

ε20n
2N

*˙

. (11)

These lower bounds are essentially tight 6 by Theorem 2.1. The first term in each of the lower bounds
is the optimal non-private rate; the second parts of the bounds are what we prove in Appendix E.2.

6Up to logarithms, and for strongly convex case–a factor of µD{L. If d ą ε20n
2N , then the trivial algorithm

attains the matching upper bound OpLDq.
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Theorem 3.1 is more generally applicable than the lower bound in [18, Proposition 3] (for the L2

setting), which only applies to sequentially interactive algorithms and databases with n “ 1 sample
per client. As in [18], our lower bounds hold for sufficiently private LDP algorithms–those for which
the privacy loss on each client in each round εr0 À 1{n 7. For n “ 1, εr0 À 1{n “ 1 is also required in
[18, Proposition 3] since they consider sequential algorithms, where εr0 “ ε0. Also, the assumptions
on δ0, δr0 are not very restrictive in practice; see Remark E.1. For federated ERM, we prove a tight
lower bound in Theorem E.4, establishing the optimality of Algorithm 2 for a class B Ă A.

4 Optimal Algorithm for Shuffle DP FL
Assume access to a secure shuffler and fix Mr “M P rN s. In each round r, the shuffler receives the
reports pZp1qr , ¨ ¨ ¨Z

pMq
r q from active clients (we assume Sr “ rM s here for concreteness), draws a

uniformly random permutation of rM s, π, and then sends pZpπp1qqr , ¨ ¨ ¨ , Z
pπpMqq
r q to the server for

aggregation. We show that this “shuffled version” of Algorithm 1 achieves the optimal convex/strongly
convex CDP bounds for i.i.d. SCO when M “ N , even with the weaker trust assumptions of the
shuffle model:
Theorem 4.1. Let f : W ˆ X Ñ Rd be β-smooth, ε ď lnp2{δq, δ P p0, 1q, and
M ě 16 lnp18RM2{Nδq for R specified below. Then DC ą 0 such that σ2

i :“
CL2RM lnpRM2

{Nδq lnpR{δq lnp1{δq
n2N2ε2 ensures that the shuffled Algorithm 1 is pε, δq-CDP @K P rns.

Further:
1. (Convex) Setting R :“ max

´

n2N2ε2

M , NM , min
!

n, ε
2n2N2

dM

)

, βDL min
!?

nM, εnN?
d

)¯

yields

EF p pwRq ´ F pw˚q “ O

˜

LD

˜

1
?
nM

`

a

d lnp1{δq

εnN

¸¸

. (12)

2. (Strongly convex) R :“ max
´

n2N2ε2

M , NM , 8β
µ ln

´

βD2µε2n2N2

dL2

¯

,min
!

n, ε
2n2N2

dM

)¯

yields

EF p pwRq ´ F pw˚q “ rO

ˆ

L2

µ

ˆ

1

nM
`
d lnp1{δq

ε2n2N2

˙˙

. (13)

Together with our LDP results, Theorem 4.1 implies that, with shuffling, Algorithm 1 is simultaneously
optimal for i.i.d. FL in the local and central models of DP if M “ N . Nesterov smoothing can be
used to obtain the same bounds without the β-smoothness assumption, similar to how we proceeded
for Theorem 2.1. We omit the details here.

5 Numerical Experiments
Linear Regression with Health Insurance Data: We divide the data set [15] into N heterogeneous
groups based on the level of the target (medical charges). See Appendix G.1 for additional details.
Fig. 2 shows that LDP MB-SGD outperforms LDP Local SGD across all privacy levels. Also, as
ε Ò 10, the price of LDP shrinks towards 0. Here, υ2

˚ describes the amount of heterogeneity between
clients’ data (increasing with heterogeneity); see Appendix D.1 for the precise definition.

Figure 2: Test error vs. ε for linear regression on heterogeneous health insurance data. We display 90% error
bars over the 20 trials (train/test splits). δ “ 1{n2; n “ 1070{N is the number of training examples per client.

Logistic Regression with MNIST: See Appendix G for experiments with M ă N . Algorithm 1 still
uniformly outperform LDP Local SGD and even outperforms non-private Local SGD for ε ě 12.5.

7If there are N “ Op1q clients, then existing CDP lower bounds [8] apply and match our LDP upper bounds
as long as ε0 À 1; thus, this restriction on εr0 disappears if N “ Op1q.
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Appendix

A Further Discussion of Related Work

In the absence of differential privacy constraints, federated learning has received a lot of attention from
researchers in recent years. Among these, the most relevant works to us are [46, 48, 43, 74, 75, 77],
which have proved bounds on the convergence rate of federated learning algorithms. From an
algorithmic standpoint, all of these works propose and analyze either Minibatch SGD (MB-SGD),
FedAvg/Local SGD [54], or an extension or accelerated/variance-reduced variation of one of these.
Notably, [75] proves tight upper and lower bounds that establish the near optimality of accelerated
MB-SGD for the heterogeneous SCO problem with non-random Mr “ M “ N in a fairly wide
parameter regime.

More recently, there have been many proposed attempts to ensure the privacy of individuals’ data
during and after the federated learning process. Some of these have used secure multi-party compu-
tation (MPC) [12, 53], but this approach leaves users vulnerable to inference attacks on the trained
model and does not provide the rigorous guarantee of DP. Others [55, 29, 38, 28, 72, 79] have used
client-level DP or global DP (CDP), which rely on a trusted third party, or hybrid DP/MPC approaches
[38, 69]. The work of [38] is particularly relevant in that they prove CDP empirical risk bounds and
high probability guarantees on the population loss when the data is i.i.d. across clients. However
they do not address LDP, non-i.i.d. FL, or provide expected excess loss bounds for i.i.d. FL. It is also
worth mentioning that [29] considers random Mr but does not prove any bounds.

Despite this progress, prior to our present work, far less was known about the convergence rate and
excess risk potential of LDP FL algorithms. The only exceptions are in the two extreme corner cases
of N “ 1 and n “ 1. When N “ 1, LDP and CDP are essentially equivalent; tight ERM [9] and
i.i.d. SCO [8, 24] bounds are known for this case. In addition, for the special case of pure LDP
i.i.d. SCO when n “ 1 and Mr “ N is fixed, [18] establishes the minimax optimal rate for the class
of sequentially interactive algorithms and convex loss functions. To the best of our knowledge, all
works examining the general LDP FL problem with arbitrary n,M,N ě 1 either focus on ERM
and/or do not provide excess risk bounds that scale with both M and ni. Furthermore, none provide
communication/gradient complexity guarantees, lower bounds, or bounds for randomMr. We discuss
each of these works in turn below:

[70] gives an LDP FL algorithm but no risk bounds.

[37] and [36] use LDP ADMM algorithms for smooth convex Federated ERM. However, their utility
bounds are stated in terms of an average of the client functions evaluated at different points, so it
is not clear how to relate their result to the standard performance measure for learning (which we
consider in this paper): expected excess risk at the point pw output by the algorithm.

[76, Theorem 2] provides an tpεi, 0quNi“1-LDP ERM bound for fixed Mr “ M “ N of

O
´

κL
2

µ
d

ĂNε2
` ε

¯

for µ-strongly convex, β-smooth f with condition number κ “ β{µ, rN “
řN
i“1 ni, and 1{ε2 is an average of 1{ε2i . The additive ε term is clearly problematic: e.g. if ε “ 1,

then the bound becomes trivial. Ignoring this term, the first term in their bound is still looser than
the bound that we provide in Theorem 2.3. Namely, our bound in part 2 of Theorem D.2 is tighter
by a factor of O

´

lnp1{δq
κn

¯

. Additionally, the bounds in [76] require R “large enough” and do not
come with communication complexity guarantees. In the convex case, the LDP ERM bound reported
in [76, Theorem 3] is not interpretable because the unspecified “constants” in the upper bound on
E pF p pwRq ´ pF pw˚q are said to be allowed to depend on R.

[73, Theorems 2 and 3] provide convergence rates for smooth PL convex LDP ERM, which are
complicated non-monotonic functions of R. Since they do not prescribe a choice of R, it is unclear
what excess risk and communication complexity bounds are attainable with their algorithm. In
particular, they do not prove any excess risk bounds.

[17] proposes LDP Inexact Alternating Minimization Algorithm (IAMA) with Laplace noise
and [17, Theorem 3.11] gives a convergence rate for smooth, strongly convex LDP FL of order

O

ˆ

Θ
ř

iPrMs σ
2
i

R

˙

ignoring smoothness and strong convexity factors, where Θ is a parameter that they
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only provide an upper bound for in special cases (e.g. quadratic objective). Thus, their bounds are
not complete for general strongly convex loss functions. Even in the special cases where they do
provide a bound for Θ, our bounds are much tighter. Assuming that Θ “ 1 and (for simplicity of
exposition) that parameters are the same across clients, their Theorem 3.1 implies taking σ2 “ 1{ε2

to ensure pε, 0q-LDP. The resulting convergence rate is then OpM{ε2q, which does not scale with ni
and is increasing with M. Also, the dependence of their rate on the dimension d is unclear, as it does
not appear explicitly in their theorem. 8 Ignoring this issue, their bound (particularly the dependence
on M and ni) is clearly much looser than all of the excess risk bounds we give in the present work.

[78] and [5] apply the LDP FL framework to Internet of Things, and [64] uses noisy (deterministic)
GD for LDP wireless channels in the FL (smooth strongly convex) ERM setting. Their bounds do not
scale with the number of data points ni, however (only with the number of clients N ). Therefore, our
bounds are much tighter, and apply to general convex FL problems besides wireless channels.

B Assumption that pi “ 1{N for all i P rN s

The assumption that pi “ 1
N for all i P rN s in (2) is without loss of generality by considering

the transformation rFipwq :“ piNFipwq. Then F pwq “
řN
i“1 piFipwq “

1
N

řN
i“1

rFipwq, so our
results for pi “ 1{N apply for general pi with Li replaced by ĂLi :“ piNLi, µi replaced by
rµi :“ piNµi, and βi gets replaced by rβi :“ piNβi. In particular, if Xi “ X for all i (as we assume
for our non-ERM results), then L gets replaced with rL “ maxiPrNs piNL, µ gets replaced with
rµ “ maxiPrNs piNµ, β gets replaced with rβ “ maxiPrNs piNβ.

C Relationships between notions of DP

C.1 LDP is stronger than CDP

Assume A is pε0, δ0q-LDP. Let X,X1 be adjacent databases in the CDP sense; i.e. there exists
a unique i P rN s, j P rnis such that xi,j ‰ x1i,j . Then for all r P rRs, l ‰ i, Xl “ X 1l , so

the conditional distributions of Rplqr pZ1:r´1, Xlq and Rplqr pZ11:r´1, X
1
lq given Zpl

1
‰lq

1:r´1 “ z
pl1‰lq
1:r´1 are

identical for all zpl
1
‰lq

1:r´1 P Zr´1ˆN´1. Integrating both sides of this equality with respect to the

joint density of Zpl
1
‰lq

1:r´1 shows thatRplqr pZ1:r´1, Xlq “ Rplqr pZ11:r´1, X
1
lq (unconditional equality of

distributions). Hence the full transcript of client l is (unconditionally) p0, 0q-CDP for all l ‰ i. A
similar argument (using the inequality (3) instead of equality) shows that client i’s full transcript
is unconditionally pε0, δ0q-CDP. Therefore, by the basic composition theorem for DP [20], the full
combined transcript of all N clients is pε0, δ0q-CDP, which implies that A is pε0, δ0q-CDP.

Conversely, pε, δq-CDP does not imply pε1, δ1q-LDP for any ε1, δ1. This is because a CDP algorithm
may send non-private updates to the server and rely on the server to randomize, completely violating
the requirement of LDP.

C.2 LDP is “stronger” than client-level DP

Precisely, we claim that ifA is pε0, δ0q-LDP thenA is pnε, nepn´1qεδq client-level DP; but conversely
pε, δq-client-level DP does not imply pε1, δ1q-LDP for any ε1, δ1. The first part of the claim is due
to group privacy [42, Theorem 10] (and the argument used above in Appendix C.1 to get rid of
the “conditional”). The second part of the claim is true because a client-level DP algorithm may
send non-private updates to the server and rely on the server to randomize, completely violating the
requirement of LDP.

8Note that in order for their result to be correct, by [9, Theorem 5.4] when N “M “ 1, their bound must
scale at least as d2{ε2n2, unless their bound is trivial (ě LD).
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D Complete Versions and Proofs of Upper Bounds for LDP FL

D.1 Notation and assumptions for stating the complete versions of our upper bounds

We will require the following additional notations and assumptions to state the complete, general
forms of our upper bound theorems.

Assumption 3. In each round r, a uniformly random subset Sr of Mr P rN s distinct clients can
communicate with the server, where tMrurě0 are i.i.d. random variables with 1

M :“ Ep 1
Mr
q and

1
M 1 :“

c

E
´

1
M2
r

¯

.

Assumption 4. For all i P rN s :

1. Exi„Di}∇fpw, xiq ´∇Fipwq}2 ď pφiq2 for all w PW, or:

2. Exi„Di}∇fpw˚, xiq ´∇Fipw˚q}2 ď pφ˚i q2 for any w˚ P argminwPW F pwq.

Assumption 4 is standard in FL (e.g. [48, 43, 75]).

For M P rN s, denote Ěφ2
M :“ 1

M

řM
i“1 φ

2
piq, where φp1q :“ φmax :“ maxiPrNs φi ě φp2q ě ¨ ¨ ¨ ě

φpNq :“ φmin :“ miniPrNs φi, and define Ğpφ˚M q
2 similarly. More generally, whenever a bar and M

subscript are appended to a parameter in this paper, it denotes the average of the M largest values.

Also, define Φ2 :“
b

ErpĚφ2
M1
q2s and Σ2 :“

b

EpĚσ2
M1
q2 for any tσ2

i u
N
i“1 Ď r0,8q.

Next, define the heterogeneity parameters υ2
˚ :“ 1

N

řN
i“1 }∇Fipw˚q}2 and υ2 :“

supwPW
1
N

řN
i“1 }∇Fipwq ´ ∇F pwq}2, which have appeared in [43, 45, 46, 75]. If the data is

homogeneous, then all Fi share the same minimizers, so υ2
˚ “ 0, but the converse is false. Also,

υ2 “ 0 iff Fi “ F ` ai for constants ai P R, i P rN s (homogeneous up to translation). Denote

Υ2
˚ :“

#
´

1´ M´1
N´1

¯

υ2
˚ if N ą 1

0 otherwise
and its counterpart Υ2, defined similarly but with υ2.

In the unbalanced data case, we will assume that each client uses proportionally sized local mini-
batches, i.e. that Ki{ni “ Kj{nj for all i, j. Also, we denote K :“ miniPrNsKi.

Lastly, for given parameters, denote ψi :“
´

Li
niεi

¯2

lnp2.5R{δiq lnp2{δiq for i P rN s, Ψ :“
c

EM1

´

1
M1

řM1

i“1 ψpiq

¯2

, ξi :“ ψi{L
2
i , and Ξ :“

c

EM1

´

1
M1

řM1

i“1 ξpiq

¯2

.

D.2 Statement and proof of upper bounds for smooth i.i.d. SCO

We first describe the noisy minibatch SGD algorithm that we use:
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Algorithm 1 Noisy MB-SGD
Require: Number of clients N P N, dimension d P N of data, noise parameters tσiuiPrNs, data

sets Xi P Xnii for i P rN s, convex loss function fpw, xq, number of communication rounds
R P N, number tKuNi“1 Ă N of local samples drawn per round, step sizes tηrurPrRs and weights
tγrurPrRs.

1: Initialize w0 “ 0.
2: for r P t0, 1, ¨ ¨ ¨ , R´ 1u do
3: for i P Sr do in parallel
4: Server sends global model wr to client i.
5: Client i draws Ki samples xri,j (uniformly with replacement) from Xi (for j P rKis) and

noise ui „ Np0, σ2
i Idq.

6: Client i computes rgir :“ 1
Ki

řKi
j“1∇fpwr, xri,jq ` ui and sends to server.

7: end for
8: Server aggregates rgr :“ 1

Mr

ř

iPSr
rgir.

9: Server updates wr`1 :“ ΠW rwr ´ ηrrgrs.
10: end for
11: return pwR “

1
ΓR

řR´1
r“0 γrwr, where ΓR :“

řR´1
r“0 γr.

Here is the informal guarantee of Algorithm 1 for smooth losses:
Theorem D.1. [Informal] Let f : W ˆ X Ñ Rd be L-Lipschitz, β-smooth, and µ-strongly
convex (with µ “ 0 for convex case). Assume ε0 ď lnp2{δ0q and choose K ě ε0n

4
?

2R lnp2{δ0q
. Then

Algorithm 1 is pε0, δ0q-LDP. Moreover, there exist choices of ηr “ η and tγruR´1
r“0 such that the

output pwR “
řR´1
r“0 γrwr of Algorithm 1 achieves the following upper bounds on excess loss:

1. (Convex) Setting R “ max
´

βD
?
M

L min
!?

n, ε0n?
d

)

,min
!

n,
ε20n

2

d

)

{K
¯

yields

EF p pwRq ´ F pw˚q “ O

˜

LD
?
M

˜

1
?
n
`

a

d lnp2.5R{δ0q lnp2{δ0q

ε0n

¸¸

. (14)

2. (Strongly convex) Setting R “ max
´

8β
µ ln

´

βD2µMε20n
2

dL2

¯

,min
!

n,
ε20n

2

d

)

{K
¯

yields

EF p pwRq ´ F pw˚q “ rO

ˆ

L2

µM

ˆ

1

n
`
d lnp2.5R{δ0q lnp2{δ0q

ε20n
2

˙˙

. (15)

We get rid of the restriction on β that appears in [8, Theorem 3.2] for N “ 1, non-strongly convex
loss by using a different (smaller, when N “ 1) step size. This allows us to extend our convex upper
bound to non-smooth functions in the distributed setting (Theorem 2.1) via Nesterov smoothing [60],
like [8] did for N “ 1.

We now state the fully general version of Theorem D.1 for arbitrary ni, εi, δi.

Theorem D.1 [Complete Version] Let f :W ˆ X Ñ R be convex, L-Lipschitz, and β-smooth in w
for all x P X , whereW is a closed convex set in Rd s.t. }w} ď D for all w PW. Let D be an arbi-
trary probability distribution on X . For each client i P rN s, draw a local i.i.d. data set Xi „ Dni .
Run Algorithm 1 and σ2

i “
256L2R lnp 2.5R

δi
q lnp2{δiq

n2
i ε

2
i

. Then the algorithm is tpεi, δiquiPrNs-LDP for any

εi P p0, lnp
2
δi
qs and δi P p0, 1q. Moreover, we get the following excess population loss bounds:

1. (Convex): Choose γr “ 1
R and constant step-size η “ min t1{4β, rηu, where

rη “
D
?

ĂM
LR min

"

?
nmin,

L?
drΨ

*

, where ĂM :“

"
?
M 1 if Ψ

M 1 ď
ψmax

M?
M otherwise

and rΨ :“

"

Ψ if Ψ
M 1 ď

ψmax

M

ψmax otherwise
. Similarly, denote rΞ :“ rΨ{L2. Then,

EF p pwRq ´ F pw˚q ď 272
LD
a

ĂM
max

"

1
?
nmin

,
a

drΞ

*
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in R :“

R

max

ˆ

βD
?

ĂM
L min

"

?
nmin,

1?
drΞ

*

,min
!

nmin,
1

drΞ

)

{K

˙V

rounds of communication.

2. (Strongly Convex) Assume additionally that fp¨, xq is µ-strongly convex for all x P X . Choose the
following constant step-size and averaging weights:

ηr “ η “ min

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1

4β
,

ln

¨

˝max

$

&

%

2, µ2D2R2

2

ˆ

4L2

MK`dmin

"

Σ2

M1
,
σ2

max
M

*˙

,

.

-

˛

‚

µR

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

, γr “ p1´ µηq
´pr`1q.

Then choosing R “

»

—

—

—

$

&

%

max
!

8β
µ ln

´

βD2µM 1

dΨ

¯

, L
2

dΨ

)

if Ψ
M 1 ď

ψmax

M

max
!

8β
µ ln

´

βD2µM
dψmax

¯

, L2

dψmax

)

otherwise

fi

ffi

ffi

ffi

implies

EF p pwRq ´ F pw˚q “ rO

ˆ

L2

µ

ˆ

1

Mnmin
` dmin

"

Ξ

M 1
,
ξmax

M

*˙˙

. (16)

Remark D.1. Note that 1{M 1 ě 1{M by Cauchy-Schwartz. Both of the upper bounds in the
complete version of Theorem D.1 involve minima of the terms Ξ{M 1 and ξmax{M, which trade off
the unbalancedness of client data and privacy needs with the variance of 1{Mr. In particular, if the
variance of 1{Mr is small enough that Ξ

M 1 ď
ξmax

M , then the communication complexity and excess
risk bounds in the complete version of Theorem D.1 depend on averages of the parameters across
clients, rather than maximums. In FL problems with unbalanced/heterogeneous data and disparate
privacy needs across a large number of clients, the difference between “average” and “max” can be
substantial. On the other hand, if data is balanced and privacy needs are the same across clients, then
ξi “ ξmax “ Ξ “ lnp2.5R{δ0q lnp2{δ0q{n

2ε20 for all i and Ξ
M 1 ě

ξmax

M , so we recover the informal
version of Theorem D.1 stated in the main body, with dependence only on the mean of 1{Mr and not
the second moment.
Remark D.2. Increasing K allows for a smaller choice of R needed to attain the excess risk bounds
in Theorem D.1. On the other hand, as K increases, the overall gradient complexity (“ KR
per client) may still increase. Thus, there is a trade-off between computational complexity and
communication complexity. Depending on the particular problem and whether computation or
communication is more of a bottleneck, K can be tuned to minimize runtime. Also, in Theorem D.1,
the dependence of our communication complexity bounds on the number of active clients M is
favorable: in the convex case, we have a

?
M dependence and for strongly convex, it is logarithmic

(yet excess risk decreases linearly in M ). This is an attractive feature of Algorithm 1 for large-scale
FL problems.

Remark D.3. The alternative form of noise in [2] with σ2 “
8L2R lnp1{δ0q

n2ε20
can be used to eliminate

the lnpR{δ0q factor in the above risk bounds. However, this choice of noise would require K «

maxt1,
a

ε0
4Rnu to ensure LDP, providing less flexibility. This remark applies verbatim to the rest of

the LDP upper bounds in this paper with the exception of Theorem 2.2.

We will require some preliminaries before we move to the proof of Theorem D.1. We begin with the
following definition from [11]:

Definition 5. (Uniform Stability) A randomized algorithm A :W ˆ X ĂN is said to be α-uniformly
stable (w.r.t. loss function f :WˆX ) if for any pair of adjacent data setsX,X 1 P X ĂN , |X∆X 1| ď 2,
we have

sup
xPX

EArfpApXq, xq ´ fpApX 1q, xqs ď α.

The following lemma, which is well-known, allows us to easily pass from empirical risk to population
loss when the algorithm in question is uniformly stable:

Lemma D.1. Let A : X ĂN ÑW be α-uniformly stable w.r.t. convex loss function f :W ˆ X Ñ R.
Let D be any distribution over X and let X „ DĂN . Then the excess population loss is upper bounded

17



by the excess expected empirical loss plus α:

ErF pApXq,Dq ´ F˚s ď α` Er pF pApXq, Xq ´ min
wPW

pF pw,Xqs,

where the expectations are over both the randomness in A and the sampling of X „ DĂN . Here we
denote the empirical loss by pF pw,Xq and the population loss by F pw,Dq for additional clarity, and
F˚ :“ minwPW F pw,Dq “ minwPW F pwq.

Proof. By [33, Theorem 2.2],

ErF pApXq,Dq ´ pF pApXq, Xqs ď α.

Hence

ErF pApXq,Dq ´ F˚s “ ErF pApXq,Dq ´ pF pApXq, Xq ` pF pApXq, Xq
´ min
wPW

pF pw,Xq ` min
wPW

pF pw,Xq ´ F˚s

ď α` Er pF pApXq, Xq ´ min
wPW

pF pw,Xqs,

since EX„DN minwPW pF pw,Xq ď minwPW E
”

pF pw,Xq
ı

“ minwPW F pw,Dq “ F˚.

The next step is to bound the uniform stability of Algorithm 1:

Lemma D.2. Let fp¨, xq be convex, L-Lipschitz, and β-smooth loss for all x P X . Then under
Assumption 3, Algorithm 1 with constant stepsize η ď 1

β is α-uniformly stable with respect to f for

α “ 2L2Rη
nminM

, where nmin “ miniPrNs ni. If, in addition fp¨, xq is µ-strongly convex, for all x P X ,
then under Assumption 3, Algorithm 1 with constant step size ηr “ η ď 1

β and any averaging weights

γr is α-uniformly stable with respect to f for α “ 4L2

µpMnmin´1q (assuming mintM,nminu ą 1).

Proof of Lemma D.2. The proof of the convex case is similar to proofs of [33, Theorem 3.8], [26,
Lemma 4.3], and [8, Lemma 3.4]. For simplicity, assume Ki “ K for all i: it will be clear from the
proof that Ki does not affect the result. For now, fix the randomness of tMrurě0. Let X,X 1 P X ĂN

be two data sets, denoted X “ pX1, ¨ ¨ ¨ , XN q for Xi P Xni for all i P rN s and similarly for X 1,
and assume |X∆X 1| “ 2. Then there is a unique a P rN s and b P rnis such that xa,b ‰ x1a,b. For
t P t0, 1, ¨ ¨ ¨ , Ru, denote the t-th iterates of Algorithm 1 on these two data sets by wt “ wtpXq and
w1t “ wtpX

1q respectively. We claim that

E
“

}wt ´ w
1
t} |tMru0ďrďt

‰

ď
2Lη

nmin

t
ÿ

r“0

1

Mr
(17)

for all t. We prove the claim by induction. It is trivially true when t “ 0. Suppose (17) holds for all
t ď τ. Denote the samples in each local mini-batch at iteration τ by txi,juiPrNs,jPrKs (dropping the
τ for brevity). First condition on the randomness due to minibatch sampling and due to the Gaussian
noise. That is, assume that the averages of the Gaussian vectors ui, u1i added to the stochastic
gradients at iteration τ of the algorithm run on X and X 1 respectively are fixed (non-random) vectors:
su :“ 1

Mτ

ř

iPSτ
ui and su1 :“ 1

Mτ

ř

iPSτ
u1i. Assume WLOG that Sτ “ rMτ s. Observe that the

function rGpwq “ gpwq ` }su}2

2 whose gradient equals∇gpwq ` su is still convex and β-smooth if g is.
Apply this observation to the convex β-smooth function gpwq “ 1

MτK

ř

iPrMτ s
fpwτ , xi,jq. Denote

rgτ “
´

1
MτK

ř

iPrMτ s,jPrKs
∇fpwτ , xi,jq

¯

`su and rg1τ “
´

1
MτK

ř

iPrMτ s,jPrKs
∇fpwτ , x1i,jq

¯

`su1.
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Then by non-expansiveness of projection, we have
}wτ`1 ´ w

1
τ`1}

“
›

›ΠW pwτ ´ ητrgτ q ´ΠW
`

w1τ ´ ητrg
1
τ

˘
›

›

ď
›

›pwτ ´ ητrgτ q ´ pw
1
τ ´ ητrg

1
τ q
›

›

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

wr ´ ηr

˜˜

1

MrK

ÿ

pi,jq‰pa,bq

∇fpwr, xi,jq

¸

` su

¸

´

˜

w1r ´ ηr

˜˜

1

MrK

ÿ

pi,jq‰pa,bq

∇fpw1r, xi,jq

¸

` su1

¸¸
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`
qτητ
MτK

›

›∇fpwτ , xa,bq ´∇fpw1τ , x1a,bq
›

›

ď}wτ ´ w
1
τ } `

qτητ
MτK

›

›∇fpwτ , xa,bq ´∇fpw1τ , x1a,bq
›

› ,

where qτ P t0, 1, ¨ ¨ ¨ ,Ku is a realization of the random variable Qτ that counts the number of
times index b occurs in worker a’s local minibatch at iteration τ, and we used non-expansiveness of
the gradient descent step [33, Lemma 3.7] for η ď 2

β (and the observation above about translating
a smooth convex function by su) in the last inequality. (Recall that we sample uniformly with
replacement.) NowQτ is a sum ofK independent Bernoulli( 1

na
q random variables, hence EQτ “ K

na
.

Then using the inductive hypothesis and taking expected value over the randomness of the Gaussian
noise and the minibatch sampling proves the claim. (Note that in the worst case, we would have
a P argminiPrNs ni.) Next, taking expectation with respect to the randomness of tMrurPrts implies

E}wt ´ w1t} ď
2Lt

nminM
,

since theMr are i.i.d. with Ep 1
M1
q “ 1

M . Then Jensen’s inequality and Lipschitz continuity of fp¨, xq
imply that for any x P X ,

ErfpĎwR, xq ´ fpĎw1R, x
1qs ď LE}ĎwR ´ Ďw1R}

ď
L

R

R´1
ÿ

t“0

E}wt ´ w1t}

ď
2L2η

RMnmin

RpR` 1q

2
“
L2ηpR` 1q

Mnmin
,

completing the proof of the convex case.

Next suppose f is µ-strongly convex. The proof begins identically to the convex case. We condition
on Mr, ui, and Sr as before and (keeping the same notation used there) get for any r ě 0

}wr`1 ´ w
1
r`1}

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

wr ´ ηr

˜˜

1

MrK

ÿ

pi,jq‰pa,bq

∇fpwr, xi,jq

¸

` su

¸

´

˜

w1r ´ ηr

˜˜

1

MrK

ÿ

pi,jq‰pa,bq

∇fpw1r, xi,jq

¸

` su1

¸¸
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`
qrηr
MrK

›

›∇fpwr, xa,bq ´∇fpw1r, x1a,bq
›

› .

We will need the following tighter estimate of the non-expansiveness of the gradient updates to bound
the first term on the right-hand side of the inequality above:

Lemma D.3. [33, Lemma 3.7.3] Let G : W Ñ Rd be µ-strongly convex and β-smooth. Assume
η ď 2

β`µ Then for any w, v PW, we have

}pw ´ η∇Gpwqq ´ pv ´ η∇Gpvqq} ď
ˆ

1´
ηβµ

β ` µ

˙

}v ´ w} ď
´

1´
ηµ

2

¯

}v ´ w}.
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Note that Grpwrq :“ 1
MrK

ř

pi,jq‰pa,bq,pi,jqPrMrsˆrKs
fpwr, x

r
i,jq is p1´ qr

MrK
qβ-smooth and p1´

qr
MrK

qµ-strongly convex and hence so is Grpwrq ` su. Therefore, invoking Lemma D.3 and the
assumption ηr “ η ď 1

β , as well as Lipschitzness of fp¨, xq@x P X , yields

}wr`1 ´ w
1
r`1} ď

˜

1´
ηµp1´ qr

MrK
q

2

¸

}wr ´ w
1
r} `

2qrηL

MrK
.

Next, taking expectations over the Mr (with mean Ep 1
Mr
q “ 1

M ), the minibatch sampling (recall
Eqr “ K

na
), and the Gaussian noise implies

E}wr`1 ´ w
1
r`1} ď

˜

1´
ηµp1´ 1

naM
q

2

¸

E}wr ´ w1r} `
2ηL

naM
.

One can then prove the following claim by an inductive argument very similar to the one used in the
proof of the convex part of Lemma D.2: for all t ě 0,

E}wt ´ w1t} ď
2ηL

naM

t
ÿ

r“0

p1´ bqr,

where b :“ µη
2

´

naM´1
naM

¯

ă 1. The above claim implies that

E}wt ´ w1t} ď
2ηL

naM

ˆ

1´ p1´ bqt`1

b

˙

ď
4L

µpnaM ´ 1q

ď
4L

µpnminM ´ 1q
.

Finally, using the above bound together with Lipschitz continuity of f and Jensen’s inequality, we
obtain that for any x P X ,

Erfp pwR, xq ´ fp pw1R, xqs ď LE} pwR ´ pw1R}

“ LE

›

›

›

›

›

1

ΓR

R´1
ÿ

r“0

γrpwr ´ w
1
rq

›

›

›

›

›

ď LE

«

1

ΓR

R´1
ÿ

r“0

γr}wr ´ w
1
r}

ff

ď L

«

1

ΓR

R´1
ÿ

r“0

γr

ˆ

4L

µpnminM ´ 1q

˙

ff

“
4L2

µpnminM ´ 1q
,

which completes the proof of Lemma D.2.

Finally, we bound the empirical loss of Algorithm 1:

Lemma D.4. Let f :W ˆ X Ñ R be µ-strongly convex (with µ “ 0 for convex case), L-Lipschitz,
and β-smooth in w for all x P X , whereW is a closed convex set in Rd s.t. }w} ď D for all w PW.

Let X P Xn1 ˆ ¨ ¨ ¨XnN . Then Algorithm 1 with σ2
i “

256L2R lnp 2.5R
δi
q lnp2{δiq

n2
i ε

2
i

attains the following
empirical loss bounds:
1. (Convex) For any η ď 1{4β and R P N, γr :“ 1{R, we have

E pF p pwRq ´ pF pw˚q ď
D2

ηR
` 2η

„

min

"

Φ2
˚

M 1K
,
pφ˚maxq

2

MK

*

`
Υ2
˚

M
`
d

2
min

"

Σ2

M 1
,
σ2

max

M

*
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.
2. (Strongly Convex) Choose the following constant step-size and averaging weights:

ηr “ η “ min

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1

4β
,

ln

¨

˝max

$

&

%

2, µ2D2R2

2

ˆ

min

"

sL2

M1
,
L2

max
M

*

`dmin

"

Σ2

M1
,
σ2

max
M

*˙

,

.

-

˛

‚

µR

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

, γr “ p1´µηq
´pr`1q.

Then choosing R “

$

&

%

max
!

8β
µ ln

´

βD2µM 1

dΨ

¯

, L
2

dΨ

)

if Ψ
M 1 ď

ψmax

M

max
!

8β
µ ln

´

βD2µM
dψmax

¯

, L2

dψmax

)

otherwise
(and assuming R ě 1)

implies

E pF p pwRq ´ pF pw˚q “ rO

ˆ

L2

µ
dmin

"

Ξ

M 1
,
ξmax

M

*˙

. (18)

The proof of Lemma D.4 will require some additional lemmas (some of which will come in handy
for later results too): First, observe that if we assume that the subset Sr of Mr P rN s active clients is
drawn uniformly (i.e. Assumption 3), then the stochastic gradients rgr in line 7 of Algorithm 1 are
unbiased estimates of∇F pwrq. Furthermore, their variance is upper bounded as follows:
Lemma D.5. Suppose Assumption 3 holds. Let f :W ˆ X Ñ R be a convex loss function and let
rgr :“ 1

Mr

ř

iPSr
1
Ki

ř

jPrKis
p∇fpwr, xri,jq ` uiq, where pxri,jqjPrKs are sampled (with replacement)

from Xi and ui „ Np0, σ2
i Idq is independent of ∇fpwr, xri,jq for all i P rN s, j P rKis. Denote

K :“ miniPrNsKi. Assume N ą 1. If f satisfies the first part of Assumption 4, then

E} rgr ´∇F pwrq}2 ď min

"

Φ2

M 1K
,
φ2

max

MK

*

`

ˆ

1´
M ´ 1

N ´ 1

˙

υ2

M
` dmin

"

Σ2

M 1
,
σ2

max

M

*

,

where Φ2 :“
b

EpĚφ2
M1
q2, and Σ2 “

b

EpĚσ2
M1
q2. If instead f satisfies the second part of Assump-

tion 4, then for rgr evaluated at wr “ w˚ P argminwPW F pwq, we have

E} rgr}2 ď min

"

Φ2
˚

M 1K
,
pφ˚maxq

2

MK

*

`

ˆ

1´
M ´ 1

N ´ 1

˙

υ2
˚

M
` dmin

"

Σ2

M 1
,
σ2

max

M

*

,

where Φ2
˚ :“

b

Er Ğpφ˚M1
q2s2. If N “ 1, then the second (middle) term on the right-hand side of each

inequality above vanishes.

The three terms on the right-hand side of each inequality correspond (from left to right) to the
variances of: local minibatch sampling within each client, the draw of the client set Sr of size Mr

under Assumption 3, and the Gaussian noise. Also, note that M ěM 1 by Cauchy-Schwartz. Each
minimum on the right-hand side is attained by the first term if 1{Mr has small variance (so that
1{M 1 « 1{M ) and/or if the clients are fairly heterogeneous, so that parameters measuring averages
(e.g. Σ2) are much smaller than the corresponding maxima (e.g. σ2

max). In the complementary case,
the minima are attained by the second terms. We now turn to the proof of Lemma D.5.

Proof of Lemma D.5. Assume f satisfies the first part of Assumption 4. First, fix the randomness due
to the size of the client setMr. Now rgr “ gr`sur, where sur “ 1

Mr

řMr

i“1 ui „ Np0, σ
2

Mr
Idq for some

σ2 ď Ěσ2
Mr

“ 1
Mr

řMr

i“1 σ
2
piq and sur is independent of gr :“ 1

Mr

ř

iPSr
1
Ki

ř

jPrKis
∇fpwr, xri,jq.

Hence,

Er} rgr ´∇F pwrq}2|Mrs “ Er}gr ´∇F pwrq}2|Mrs ` Er}su}2|Mrs

ď Er}gr ´∇F pwrq}2|Mrs ` d
Ěσ2
Mr

Mr
.

Let us drop the r subscripts for brevity (denoting g “ gr, w “ wr, S “ Sr, and Mr “M1 since they
have the same distribution) and denote hi :“ 1

Ki

řKi
j“1∇fpw, xi,jq. Now, we have (conditionally on
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M1)

Er}g ´∇F pwq}2|M1s “ E

»

–

›

›

›

›

›

1

M1

ÿ

iPS

1

Ki

Ki
ÿ

j“1

∇fpw, xi,jq ´∇F pwq

›

›

›

›

›

2
ˇ

ˇ

ˇ

ˇ

M1

fi

fl

“ E

»

–

›

›

›

›

›

1

M1

ÿ

iPS

p∇hi ´∇Fipwqq `
1

M1

ÿ

iPS

∇Fipwq ´∇F pwq

›

›

›

›

›

2
ˇ

ˇ

ˇ

ˇ

M1

fi

fl

“
1

M2
1

E

«

}
ÿ

iPS

hipwq ´∇Fipwq}2
ˇ

ˇ

ˇ

ˇ

M1

ff

l jh n

a©

`
1

M2
1

E

«

}
ÿ

iPS

∇Fipwq ´∇F pwq}2
ˇ

ˇ

ˇ

ˇ

M1

ff

l jh n

b©

,

since, conditional on S, the cross-terms vanish by (conditional) independence of hi and the non-
random

ř

i1PS ∇Fi1pwq ´∇F pwq for all i P S. Now we bound a©:

a© “ ES

«

Ehi}
ÿ

iPS

hipwq ´∇Fipwq}2
ˇ

ˇ

ˇ

ˇ

S,M1

ff

“ ES

«

ÿ

iPS

Ehi}hipwq ´∇Fipwq}2
ˇ

ˇ

ˇ

ˇ

S,M1

ff

ď ES

«

ÿ

iPS

φ2
i

Ki

ff

ď ES

«

M1
Ěφ2
M1

K

ff

,

by conditional independence of hi ´∇Fi and hi1 ´∇Fi1 given S. Hence

1

M2
1

E

«

}
ÿ

iPS

hipwq ´∇Fipwq}2
ˇ

ˇ

ˇ

ˇ

M1

ff

ď

Ěφ2
M1

M1K
.

Next we bound b©. Fix any w PW and denote yi :“ ∇Fipwq and sy :“ 1
N

řN
i“1 yi “ ∇F pwq. We

claim b© = E
„

}
ř

iPS yi ´ sy}2
ˇ

ˇ

ˇ

ˇ

M1



ď M1

´

N´M1

N´1

¯

υ2. Assume WLOG that sy “ 0 (otherwise,

consider y1i “ yi ´ sy, which has mean 0). Also, we omit the “conditional on M1” notation (but
continue to condition on M1) in the below and denote by Ω the collection of all

`

N
M1

˘

subsets of rN s
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of size M1. Now,

b© “
1

`

N
M1

˘

ÿ

SPΩ

›

›

›

›

›

ÿ

iPS

yi

›

›

›

›

›

2

“
1

`

N
M1

˘

ÿ

SPΩ

˜

ÿ

iPS

}yi}
2 ` 2

ÿ

i,i1PS,iăi1

xyi, yi1y

¸

“
1

`

N
M1

˘

˜

ˆ

N ´ 1

M1 ´ 1

˙ N
ÿ

i“1

}yi}
2 ` 2

ˆ

N ´ 2

M1 ´ 2

˙

ÿ

1ďiăi1ďN

xyi, yi1y

¸

“
M1

N

N
ÿ

i“1

}yi}
2 ` 2

M1pM1 ´ 1q

NpN ´ 1q

ÿ

1ďiăi1ďN

xyi, yi1y

“
M1

N

ˆ

M1 ´ 1

N ´ 1
`
N ´M1

N ´ 1

˙ N
ÿ

i“1

}yi}
2 `

2M1pM1 ´ 1q

NpN ´ 1q

ÿ

1ďiăi1ďN

xyi, yi1y

“
M1

N

M1 ´ 1

N ´ 1

›

›

›

›

›

N
ÿ

i“1

yi

›

›

›

›

›

2

`
M1

N

N ´M1

N ´ 1

N
ÿ

i“1

}yi}
2

“
M1

N

N ´M1

N ´ 1

N
ÿ

i“1

}yi}
2

ďM1

ˆ

N ´M1

N ´ 1

˙

.

Hence 1
M2

1
E
„

}
ř

iPS ∇Fipwq ´∇F pwq}2
ˇ

ˇ

ˇ

ˇ

M1



ď N´M1

N´1
υ2

M1
. Finally, we take expectation over the

randomness in M1 to get

E}rgr ´∇F pwrq}2 ď E

«

Ěφ2
M1

M1K
`

ˆ

1´
M1 ´ 1

N ´ 1

˙

υ2

M1

ff

` dE
Ěσ2
M1

M1

ď min

"

Φ2

M 1K
,
φ2

max

MK

*

`

ˆ

1´
M ´ 1

N ´ 1

˙

υ2

M
` dmin

"

Σ2

M 1
,
σ2

max

M

*

,

where, in each minima, the first respective term was obtained using Cauchy-Schwartz and the
second term by bounding the numerator by the deterministic “max,” which can be pulled outside
the expectation. The second statement in the lemma is proved in a nearly identical manner. The
statement when N “ 1 follows from the first part of the proof alone, since the b© term is zero when
there is no variance in client sampling (which is the case when N “ 1).

We will also need the following lemmas for the proof of Lemma D.4 (and hence Theorem D.1):
Lemma D.6. (Projection lemma) LetW Ă Rd be a closed convex set. Then }ΠWpaq´b}

2 ď }a´b}2

for any a P Rd, b PW.

Lemma D.6 is well-known.9 We also recall a standard property of smooth convex functions for
convenience:
Lemma D.7. (Co-coercivity of the gradient) For any convex, β-smooth function F :W Ñ R and
any w,w1 PW, we have

}∇F pwq ´∇F pw1q}2 ď βx∇F pwq ´∇F pw1q, w ´ w1y,
and

}∇F pwq ´∇F pw1q}2 ď 2βpF pwq ´ F pw1q ´ x∇F pw1q, w ´ w1yq.

Lastly, we need the following lemmas to optimize the step-sizes for our strongly convex excess risk
bounds:

9It can be proved by expanding both sides and applying [52, Lemma B.4] multiple times.
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Lemma D.8. [67, Lemma 2] Let b ą 0, let a, c ě 0, and tηtutě0 be non-negative step-sizes such
that ηt ď 1

g for all t ě 0 for some parameter g ě a. Let trtutě0 and tstutě0 be two non-negative
sequences of real numbers which satisfy

rt`1 ď p1´ aηtqrt ´ bηtst ` cη
2
t

for all t ě 0. Then there exist particular choices of step-sizes ηt ď 1
g and averaging weights γt ě 0

such that

b

ΓT

T
ÿ

t“0

stγt ` arT`1 “ rO

ˆ

gr0 exp

ˆ

´aT

g

˙

`
c

aT

˙

,

where ΓT :“
řT
t“0 γt. In fact, we can choose ηt and γt as follows:

ηt “ η “ min

#

1

g
,

ln
`

max
 

2, a2r0T
2{c

(˘

aT

+

, γt “ p1´ aηq
´pt`1q.

Finally, we are ready to prove Lemma D.4:

Proof of Lemma D.4. We essentially follow the proof of the excess risk bound for the non-private
version of Algorithm 1 given in [75, Theorem 1] (adapted for possibly constrainedW ‰ Rd using
projection), but accounting for the added Gaussian noise and random Mr. First, condition on the
random Mr and consider Mr as fixed. Let w˚ P argminwPW pF pwq be any minimizer of pF with
norm less than or equal to D, and denote the average of the i.i.d. Gaussian noises across all clients in

one round by sur :“ 1
Mr

ř

iPSr
ui. Note that sur „ N

ˆ

0,
Ęσ2
Mr

Mr
Id

˙

by independence of the tuiuiPrNs

and hence E}sur}2 “
dĘσ2
Mr

Mr
. Then for any r ě 0, conditional on Mr, we have that

E
„

}wr`1 ´ w
˚}

2

ˇ

ˇ

ˇ

ˇ

Mr



(19)

“E

»

–

›

›

›

›

›

ΠW

«

wr ´ ηr

˜

1

Mr

ÿ

iPSr

1

Ki

Ki
ÿ

j“1

∇fpwr, xri,jq ´ ui

¸ff

´ w˚

›

›

›

›

›

2
ˇ

ˇ

ˇ

ˇ

Mr

fi

fl

ďE

»

–

›

›

›

›

›

wr ´ ηr

˜

1

Mr

ÿ

iPSr

1

Ki

Ki
ÿ

j“1

∇fpwr, xri,jq ´ ui

¸

´ w˚

›

›

›

›

›

2
ˇ

ˇ

ˇ

ˇ

Mr

fi

fl

“E
„

}wr ´ w
˚}2

ˇ

ˇ

ˇ

ˇ

Mr



´ 2ηrE
„

x∇ pF pwrq ` sur, wr ´ w
˚y

ˇ

ˇ

ˇ

ˇ

Mr



(20)

` η2
rE

»

–

›

›

›

›

›

sur `
1

Mr

ÿ

iPSr

1

Ki

Ki
ÿ

j“1

∇fpwr, xri,jq

›

›

›

›

›

2
ˇ

ˇ

ˇ

ˇ

Mr

fi

fl

ďp1´ µηrqE
„

}wr ´ w
˚}

2

ˇ

ˇ

ˇ

ˇ

Mr



´ 2ηrEr pF pwrq ´ pF˚|Mrs (21)

` η2
rE

»

–

›

›

›

›

›

sur `
1

Mr

ÿ

iPSr

1

Ki

Ki
ÿ

j“1

∇fpwr, xri,jq

›

›

›

›

›

2
ˇ

ˇ

ˇ

ˇ

Mr

fi

fl , (22)

where we used Lemma D.6 in the first inequality, and µ-strong convexity of pF (for µ ě 0) and
the fact that sur is independent of the gradient estimate and mean zero in the last inequality. Now,
omitting the “conditional on Mr” notation for brevity (but still conditioning on Mr), we can bound
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the last term by

E

›

›

›

›

›

sur `
1

Mr

ÿ

iPSr

1

Ki

Ki
ÿ

j“1

∇fpwr, xri,jq

›

›

›

›

›

2

“E

›

›

›

›

›

1

Mr

ÿ

iPSr

1

Ki

Ki
ÿ

j“1

∇fpwr, xri,jq ´∇fpw˚, xri,jq `∇fpw˚, xri,jq

›

›

›

›

›

2

` d
Ěσ2
Mr

Mr

ď2E

›

›

›

›

›

1

Mr

ÿ

iPSr

1

Ki

Ki
ÿ

j“1

∇fpwr, xri,jq ´∇fpw˚, xri,jq

›

›

›

›

›

2

` 2E

›

›

›

›

›

1

Mr

ÿ

iPSr

1

Ki

Ki
ÿ

j“1

∇fpw˚, xri,jq

›

›

›

›

›

2

` d
Ěσ2
Mr

Mr

ď
2

Mr

ÿ

iPSr

1

Ki

Ki
ÿ

j“1

E
›

›∇fpwr, xri,jq ´∇fpw˚, xri,jq
›

›

2

`
2

Mr

˜

Ğpφ˚Mr
q2

K
`Υ2

r

¸

` d
Ěσ2
Mr

Mr

ď
4β

Mr

ÿ

iPSr

1

Ki

Ki
ÿ

j“1

E
“

fpwr, x
r
i,jq ´ fpw

˚, xri,jq ´ x∇fpw˚, xri,jq, wr ´ w˚y
‰

`
2

Mr

˜

Ğpφ˚Mr
q2

K
`Υ2

r

¸

` d
Ěσ2
Mr

Mr

ď 4βEr pF pwrq ´ pF˚s `
2

Mr

˜

Ğpφ˚Mr
q2

K
`Υ2

r

¸

` d
Ěσ2
Mr

Mr

where we denote Υ2
r :“

#
´

1´ Mr´1
N´1

¯

υ2
˚ if N ą 1

0 otherwise.
Above, we used the “relaxed triangle

inequality” (see e.g. [43, Lemma 3]) in the first inequality, Lemma D.5 (with Mr considered
fixed/non-random due to conditioning and replacing rgr by the noiseless minibatch gradient) in the
second inequality, Lemma D.7 in the third inequality, and the first-order optimality conditions for
constrained optimization in the final inequality. The first equality is due to independence of the
Gaussian noise and the stochastic gradients. Next, plugging this estimate back into Equation 22 and
noting that ηr ď 1

4β for all r ě 0, we obtain

E
„

}wr`1 ´ w
˚}2

ˇ

ˇ

ˇ

ˇ

Mr



ď p1´ µηrqE
„

}wr ´ w
˚}2

ˇ

ˇ

ˇ

ˇ

Mr



´ 2ηrp1´ 2βηrqEr pF pwrq ´ pF˚|Mrs

(23)

`
2η2
r

Mr

˜

Ğpφ˚Mr
q2

K
`Υ2

r

¸

` η2
rd

Ěσ2
Mr

Mr

ď p1´ µηrqEr}wr ´ w˚}2|Mrs ´ ηrEr pF pwrq ´ pF˚|Mrs

`
2η2
r

Mr

˜

Ğpφ˚Mr
q2

K
`Υ2

r

¸

` η2
rd

Ěσ2
Mr

Mr
, (24)

which implies

Er pF pwrq ´ pF˚|Mrs ď

ˆ

1

ηr
´ µ

˙

Er}wr ´ w˚}2|Mrs ´
1

ηr
Er}wr`1 ´ w

˚}2|Mrs

`
2ηr
Mr

˜

Ğpφ˚Mr
q2

K
`Υ2

r

¸

` ηrd
Ěσ2
Mr

Mr
. (25)
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Now we consider the convex (µ “ 0) and strongly convex (µ ą 0) cases separately.

Convex (µ “ 0) case: By our choice of ηr “ η and (25), the average iterate xwR satisfies:

Er pF pxwRq ´ pF˚|tMrurďRs ď
1

R

R´1
ÿ

r“0

Er pF pwrq ´ pF˚|Mrs

ď
1

R

R´1
ÿ

r“0

1

η
pEr}wr ´ w˚}2 ´ }wr`1 ´ w

˚}|Mrsq

`
1

R

R´1
ÿ

r“0

2η

Mr

˜

Ğpφ˚Mr
q2

K
`Υ2

r ` d
Ěσ2
Mr
{2

¸

ď
}w0 ´ w

˚}2

ηR
`

1

R

R´1
ÿ

r“0

2η

Mr

˜

Ğpφ˚Mr
q2

K
`Υ2

r ` d
Ěσ2
Mr
{2

¸

.

Then taking expectation over the randomness in Mr, we get by Assumption 3 that

E pF p pwRq ´ pF pw˚q ď
D2

ηR
` 2η

„

min

"

Φ2
˚

M 1K
,
pφ˚maxq

2

MK

*

`

ˆ

1´
M ´ 1

N ´ 1

˙

υ2
˚

M
`
d

2
min

"

Σ2

M 1
,
σ2

max

M

*

(26)

if N ą 1; and if N “ 1, then the term involving υ2
˚ vanishes. Above we used Cauchy-Schwartz to

get the first term in each of the minima and upper bounded the numerator by the non-random “max”
quantity (and invoked linearity of expectation) for the second.

Strongly convex (µ ą 0) case: Recall from (24) that

Er}wt`1 ´ w
˚}2|Mts ď p1´ µηtqEr}wt ´ w˚}2|Mts ´ ηrEr pF pwtq ´ pF˚|Mts

`
2η2
t

Mt

˜

Ğpφ˚Mt
q2

K
`Υ2

t ` d
Ěσ2
Mt
{2

¸

(27)

for all t ě 0. Taking expectation over Mt gives

E}wt`1 ´ w
˚}2 ď p1´ µηtqE}wt ´ w˚}2 ´ ηtEr pF pwtq ´ pF˚s (28)

` 2η2
t

„

4L2

MK
`

Υ2

M
`
d

2
min

"

Σ2

M 1
,
σ2

max

M

*

, (29)

which satisfies the conditions for Lemma D.8, with sequences

rt “ E}wt ´ w˚}2, st “ Er pF pwtq ´ pF˚s

and parameters

a “ µ, b “ 1, c “ 2

ˆ

4L2

MK
`

Υ2
˚

M

˙

` dmin

"

Σ2

M 1
,
σ2

max

M

*

, g “ 4β, T “ R.

Then applying Lemma D.8 and Jensen’s inequality completes the proof.

At last, we are prepared to prove Theorem D.1.

Proof of Theorem D.1. Privacy: By independence of the Gaussian noise across clients, it suffices
to show that transcript of client i’s interactions with the server is DP for all i P rN s (conditional on
the transcripts of all other clients). WLOG consider i “ 1 and denote client 1’s privacy parameters
by ε and δ. Then the proof begins along similar lines as the proof of [9, Theorem 2.1]. By the
advanced composition theorem [20, Theorem 3.20], it suffices to show that each of the R rounds
of the algorithm is prε, rδq-LDP, where rε “ ε

2
?

2R lnp2{δq
(we used the assumption ε ď lnp2{δq here)

and rδ “ δ
2R . First, condition on the randomness due to local sampling of the local data point

xr1,1 (line 4 of Algorithm 1). Now, the L2 sensitivity of each local step of SGD is bounded by
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∆ :“ sup|X1∆X11|ď2,wPW } 1
K

řK
j“1∇fpw, x1,jq ´∇fpw, x11,jq} ď 2L{K, by L-Lipschitzness of

f. Thus, since rε ď 1 by assumption, the standard privacy guarantee of the Gaussian mechanism [20,
Theorem A.1] implies that (conditional on the randomness due to sampling) taking σ2

1 ě
8L2 lnp1.25{rδq

rε2K2

suffices to ensure that round r (in isolation) is prε, rδq-LDP. Now we invoke the randomness due to
sampling: [71, Problem 1b] implies that round r (in isolation) is p 2rεK

n1
, rδq-LDP (where we used the

fact that rε ď 1 implies erε´1 ď 2). Therefore, with sampling, it suffices to take σ2
1 ě

32L2 lnp1.25{rδq
n2

1rε
2 “

256L2R lnp2.5R{δq lnp2{δq
n2

1ε
2 to ensure that round r (in isolation) is prε, rδq-LDP for all r and hence that the

full algorithm (R rounds) is pε, δq-LDP.

Excess loss: First suppose f is merely convex (µ “ 0). By Lemma D.2, Lemma D.1, and Lemma D.4
(and noting φ˚max ď 4L2 and υ2

˚ “ 0 since client data is i.i.d.), we have:

EF p pwRq ´ F pw˚q ď α` E pF p pwRq ´ pF pw˚q (30)

ď
2L2Rη

nminM
`
D2

ηR
(31)

` 2η

„

min

"

Φ2
˚

M 1K
,
pφ˚maxq

2

MK

*

`

ˆ

1´
M ´ 1

N ´ 1

˙

υ2
˚

M
`
d

2
min

"

Σ2

M 1
,
σ2

max

M

*

(32)

ď
2L2Rη

nminM
`
D2

ηR
` 2η

„

4Rdmin

"

Ψ

M 1
,
ψmax

M

*

`
4L2

MK



(33)

ď ηL2

„

R

ˆ

2

Mnmin
` 256dmin

"

Ξ

M 1
,
ξmax

M

*˙

`
8

MK



`
D2

ηR
(34)

for any η ď 1
4β . Then one can verify that the prescribed choice of η and R yields the desired bound.

Now suppose f is µ-strongly convex. The prescribed choice of η and R imply that

E pF p pwRq ´ pF pw˚q “ rO

ˆ

d

µ
min

"

Ψ

M 1
,
ψmax

M

*˙

by Lemma D.4. Then the result follows from Lemma D.1 and Lemma D.2.

D.3 Complete statement and proof of Theorem 2.1

Using the same notation as in the complete version of Theorem D.1, we have:

Theorem 2.1 [Complete Version] Let f :WˆX Ñ R be µ-strongly convex (with µ “ 0 for convex
case) and L-Lipschitz, in w for all x P X , whereW is a closed convex set in Rd s.t. }w} ď D for all
w PW. Let D be an arbitrary probability distribution on X . For each client i P rN s, draw a local

i.i.d. data set Xi „ Dni . Running Algorithm 1 on fβpw, xq :“ minvPW

´

fpv, xq ` β
2 }w ´ v}

2
¯

with β as prescribed below and the same σ2
i , ηr “ η and tγruR´1

r“0 in Theorem D.1[Complete Version]
results in the following upper bounds on the excess loss (w.r.t. f ):

1. (Convex) Setting β :“ L
?

ĂM
D min

ˆ

?
nmin,

1?
drΞ

˙

and R :“
Q

ĂM min
!

nmin,
1

drΞ

)U

yields

EF p pwRq ´ F pw˚q ď 545
LD
a

ĂM
max

"

1
?
nmin

,
a

drΞ

*

.

2. (Strongly convex) Setting β :“ µĂM min
!

nmin,
1

drΞ

)

and R :“
Q

max
!

8ĂM min
!

nmin,
1

drΞ

)

ln
´

βD2µM 1

dL2
rΞ

¯

, 1

drΞ

)U

yields

EF p pwRq ´ F pw˚q “ rO

ˆ

L2

µ

ˆ

1

Mnmin
` dmin

"

Ξ

M 1
,
ξmax

M

*˙˙

.

The proof follows from applying Theorem D.1 to the β-smooth, Lipschitz, convex loss Fβ to upper
bound EFβp pwRq ´ F˚β and then relating this quantity to EF p pwRq ´ F pw˚q by using:
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Lemma D.9. (see [60], [8, Lemma 4.3]) Let f :W Ñ Rd be convex and L-Lipschitz and let β ą 0.
Then the β-Moreau envelope fβpwq :“ minvPW

´

fpvq ` β
2 }w ´ v}

2
¯

satisfies:
1. fβ is convex, 2L-Lipschitz, and β-smooth.
2. @w, fβpwq ď fpwq ď fβpwq `

L2

2β .

Proof of Theorem 2.1. We have EF p pwRq´F pw˚q ď EFβp pwRq´F˚β `
L2

2β , by part 2 of Lemma D.9.
Then plugging in β and combining part 1 of Lemma D.9 with Theorem D.1 completes the proof.

D.4 Noisy Accelerated MB-SGD Algorithm and the complete statement and proof of
smooth upper bounds

We first state the informal guarantee of Algorithm 2 for smooth losses:

Theorem D.2. [Informal] Let f :W ˆ X Ñ Rd be L-Lipschitz, β-smooth, and µ-strongly convex
(with µ “ 0 for convex case). Then, Algorithm 2 with σ2

i :“ 256L2R lnp2.5R{δ0q lnp2{δ0q
n2ε20

is pε0, δ0q-LDP.

Moreover, for any X P XnˆN , its output pwR satisfies:

1. (Convex) Setting R “ max

ˆ

´

βD
?
Mε0n

L
?
d

¯1{2

,
ε20n

2

d

"

1
K if M = N
1 otherwise

˙

yields

E pF p pwRq ´ pF pw˚q “ O

˜

LD

˜

a

d lnp2.5R{δ0q lnp2{δ0q

ε0n
?
M

¸¸

. (35)

2. (Strongly convex) Setting R “ max

ˆ

b

β
µ ln

´

DµMε20n
2

Ld

¯

,
ε20n

2

d

"

1
K if M = N
1 otherwise

˙

yields

E pF p pwRq ´ pF pw˚q “ O

ˆ

L2

µ

ˆ

d lnp2.5R{δ0q lnp2{δ0q

ε20n
2M

˙˙

. (36)

The Noisy Accelerated MB-SGD algorithm is formally described in Algorithm 2.

Algorithm 2 Noisy Accelerated MB-SGD
Require: Number of clients N P N, dimension d P N of data, noise parameters tσiuiPrNs,

closed convex setW Ă Rd, data sets Xi P Xnii for i P rN s, loss function fpw, xq, number of
communication rounds R P N, number Ki P N of local samples drawn per round, step size
parameters tηrurPrRs, tαrurPrRs such that α1 “ 1, αr P p0, 1q for all r ě 2 and ηr ą 0 for all
r ě 1, norm D of some optimum w˚ of F.

1: Set initial point wag0 “ w0 PW and r “ 1.
2: for r P rRs do
3: Server updates and broadcasts wmdr “

p1´αrqpµ`ηrq
ηr`p1´α2

rqµ
wagr´1 `

αrrp1´αrqµ`ηrs
ηr`p1´α2

rqµ
wr´1

4: for i P Sr do in parallel
5: Client draws Ki samples xri,j (uniformly with replacement) from Xi (for j P rKis) and

noise ui „ Np0, σ2
i Idq.

6: Client computes rgir :“ 1
Ki

řKi
j“1∇fpwmdr , xri,jq ` ui.

7: end for
8: Server aggregates rgr :“ 1

M

řM
i“1 rg

i
r.

9: Server updates and broadcasts:
10: wr :“ argminwPW

 

αr
“

xrgr, wy `
µ
2 }w

md
r ´ w}2

‰

`
“

p1´ αrq
µ
2 `

ηr
2

‰

}wr´1 ´ w}
2
(

.
11: Server updates and broadcasts wagr “ αrwr ` p1´ αrqw

ag
r´1.

12: end for
13: return wagR .

Next, we state the complete version of Theorem D.2:
Theorem D.2 [Complete Version] Let X P Xn1

1 ˆ ¨ ¨ ¨XnNN . Suppose fp¨, xiq is Li-Lipschitz and
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convex on W for all xi P Xi, i P rN s, pF p¨,Xq :“ pF p¨q is sβ-smooth, Assumption 4 part 1 and

Assumption 3 hold. Set σ2
i “

256L2
iR lnp 2.5R

δi
q lnp2{δiq

n2
i ε

2
i

. Denote

Υ2 “

#
´

1´ M´1
N´1

¯

υ2 if N ą 1

0 otherwise

and

V 2 :“ min

"

Φ2

M 1K
,
φ2

max

MK

*

` dmin

"

Σ2

M 1
,
σ2

max

M

*

`
Υ2

M
,

where K :“ miniPrNsKi. Then Algorithm 2 is tpεi, δiquiPrNs-LDP for any εi P p0, lnp 2
δi
qs and

δi P p0, 1q. Moreover:
1. Running Algorithm 2 on rF pwq :“ pF pwq ` λ

2 }w}
2 with λ :“ V

2D
?
R

for R rounds yields (for some
choice of stepsizes)

E pF pwagR q´
pF pw˚q À

sβD2

R2
`D

«

min

#

c

pΦ2{KRq ` dΨ

M 1
,

c

pφ2
max{KRq ` dψmax

M

+

`

c

Υ2

MR

ff

.

(37)

In particular, setting R “

$

’

’

&

’

’

%

max

"

´

sβD
?
M 1

?
dΨ

¯1{2

, Φ2
{K`Υ2

dΨ

*

if Ψ
M 1 ď

ψmax

M

max

"

´

sβD
?
M

?
dψmax

¯1{2

,
φ2

max{K`Υ2

dψmax

*

otherwise
implies

E pF pwagR q ´
pF pw˚q À D

?
dmin

# ?
Ψ

?
M 1

,

?
ψmax
?
M

+

, (38)

assuming R ě 1.

2. If, in addition, pF is sµ-strongly convex, then running a multi-stage implementation of Algorithm 2
directly on pF with the same choices of σ2

i and K yields

E pF pwagR q ´
pF pw˚q À ∆ exp

ˆ

´

c

sµ
sβ
R

˙

`
1

sµ

„

min

"

pΦ2{KRq ` dΨ

M 1
,
pφ2

max{KRq ` dψmax

M

*

`
Υ2

MR



, (39)

where F pw0q ´ F
˚ ď ∆.

In particular, choosing R “

$

’

’

&

’

’

%

max

"

b

sβ
sµ ln

´

∆sµM 1

dΨ

¯

, Φ2
{K`Υ2

dΨ

*

if Ψ
M 1 ď

ψmax

M

max

"

b

sβ
sµ ln

´

∆sµM
dψmax

¯

,
φ2

max{K`Υ2

dψmax

*

otherwise
implies

E pF pwagR q ´
pF pw˚q À

d

sµ
min

"

Ψ

M 1
,
ψmax

M

*

, (40)

provided R ě 1.

Proof of Theorem D.2. LDP of Algorithm 1 follows from LDP of Algorithm 1 (see Theorem D.1)
and the post-processing property of DP [20, Proposition 2.1]. Namely, since the choice of noise given
in Theorem D.2 ensures that clients’ local stochastic minibatch gradients are LDP and the iterates in
Algorithm 2 are functions of these private noisy gradients, it follows that the iterates themselves are
LDP.
For convergence, we begin with the convex (sµ “ 0) part. We will need the following lemma:

Lemma D.10. [75, Lemma 4] Let F : W Ñ Rd be convex and β-smooth, and sup-
pose that the unbiased stochastic gradients rgpwtq at each iteration have bounded variance
E}rgpwq ´ ∇F pwq}2 ď V 2. If pwag is computed by T steps of AC-SA on the regularized objec-
tive rF pwq “ F pwq ` V

2}w0´w˚}
?
T
}w ´ w0}

2, then

EF p pwagq ´ F˚ À
β}w0 ´ w

˚}2

T 2
`
V }w0 ´ w

˚}
?
T

.
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Combining Lemma D.10 with the estimates of the variance of the stochastic gradients from
Lemma D.5 (and replacing β by sβ) proves the first (convex) part of Theorem D.2.

For the second (strongly convex) part, we follow [31, 75] and use the following multi-stage imple-
mentation of Algorithm 2 to further accelerate convergence: Let F p0q´F˚ ď ∆ and q0 “ 0. Then
for k P rU s, do the following:

1. Run Rk rounds of Algorithm 2 using w0 “ qk´1, tαrurě1 and tηrurě1, where

Rk “

S

max

#

4

d

2β

µ
,

128V 2

3µ∆2´pk`1q

+W

,

αr “
2

r ` 1
, ηr “

4υk
rpr ` 1q

,

υk “ max

#

2β,

„

µV 2

3∆2´pk´1qRkpRk ` 1qpRk ` 2q

1{2
+

2. Set qk “ wagRk , where wagRk is the output of Step 1 above. Then update k Ð k` 1 and return
to Step 1.

We then have the following risk bound for the multi-stage protocol:

Lemma D.11. [31, Proposition 7] Let F : W Ñ Rd be µ-strongly convex and β-smooth, and
suppose that the unbiased stochastic gradients rgpwtq at each iteration have bounded variance
E}rgpwq ´∇F pwq}2 ď V 2. If pwag is computed by T steps of the multi-stage AC-SA, then

EF p pwagq ´ F˚ À ∆ exp

ˆ

´

c

µ

β
T

˙

`
V 2

µT
,

where ∆ “ F pw0q ´ F
˚.

In our notation, T “ R and F is replaced by pF , which is sµ-strongly convex and sβ-smooth by
assumption. If U is chosen so that

řU
k“1Rk ď R total rounds of Algorithm 2, then the full algorithm,

run with noise σ2
i specified in Theorem D.2 [Complete Version], is LDP. Applying Lemma D.11 with

V 2 “ min

"

Φ2

M 1K
,
φ2

max

MK

*

`
Υ2

M
` dmin

"

Σ2

M 1
,
σ2

max

M

*

from Lemma D.5 proves the strongly convex portion of Theorem D.2.

D.5 Proof of Theorem 2.2

Proof of Theorem 2.2. 1. Privacy: By post-processing, it suffices to show that the R “ n noisy
gradients computed in line 6 of Algorithm 2 are pε0, δ0q-LDP. Further, since the points sampled
locally are disjoint/distinct (because we sample locally without replacement), parallel composition
[56] implies that if each update in line 6 is pε0, δ0q-LDP, then the full algorithm is pε0, δ0q-LDP. Now
recall that the Gaussian mechanism [20, Appendix A.1] provides pε0, δ0q-DP if σ2 ě

2∆2
2 lnp1.25{δ0q

ε20
,

where ∆2 “ supw,x }∇fpw, xq ´∇fpw, x1q} ď 2L is the L2 sensitivity of the non-private gradient
update in line 6 of Algorithm 2. Therefore, conditional on the private transcript of all other clients,
we see that client i’s transcript is pε0, δ0q-DP for all i P rN s, which means that One-Pas Noisy
Accelerated Distributed SGD is pε0, δ0q-LDP.
2. Excess loss: For the convex case, we plug the estimate for the variance of the noisy stochastic
gradients from Lemma D.5 for V 2 in Lemma D.10 and set T “ n. Note that L-Lipschitzness
implies that V 2 ď

φ2

M ` υ2

M ` dσ2

M ď 5L2
`dσ2

M . Similarly, for strongly convex loss, we plug the same
estimate for V 2 into Lemma D.11 with T “ n (using the multi-stage implementation of Algorithm 2,
described in the previous subsection of this appendix). This completes the proof.
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D.6 Complete version and proof of Theorem 2.3

Theorem 2.3 [Complete Version] Suppose fp¨, xiq is Li-Lipschitz and convex onW for all xi P
Xi, i P rN s, Assumption 4 part 1 and Assumption 3 hold. Assume Li “ L for all i. Set σ2

i “
256L2R lnp 2.5R

δi
q lnp2{δiq

n2
i ε

2
i

. Denote

Υ2 “

#
´

1´ M´1
N´1

¯

υ2 if N ą 1

0 otherwise
and

V 2 :“ min

"

Φ2

M 1K
,
φ2

max

MK

*

` dmin

"

Σ2

M 1
,
σ2

max

M

*

`
Υ2

M
,

where K :“ miniPrNsKi. Also denote ĂM :“

"
?
M 1 if Ψ

M 1 ď
ψmax

M?
M otherwise

and rΨ :“

"

Ψ if Ψ
M 1 ď

ψmax

M

ψmax otherwise
. Fix any X P Xn1

1 ˆ ¨ ¨ ¨ ˆ XnNN and denote pFβpwq :“

1
N

řN
i“1

řni
j“1

1
ni
fβpw, xi,jq, with fβ defined earlier (see complete version of Theorem 2.1). Then:

1. Running Algorithm 2 on rFβpwq :“ pFβpwq `
λ
2 }w}

2 with λ :“ V
2D
?
R

and β :“ L2
?

ĂM

D
?
drΨ

for R

rounds yields (for some choice of stepsizes)

E pF pwagR q ´
pF pw˚q À

L2D
a

ĂM

R2
a

drΨ
`D

«

min

#

c

pΦ2{KRq ` dΨ

M 1
,

c

pφ2
max{KRq ` dψmax

M

+

`

c

Υ2

MR

ff

`D
?
dmin

# ?
Ψ

?
M 1

,

?
ψmax
?
M

+

.

In particular, setting R “

$

&

%

max
!´

L
?
M 1

?
dΨ

¯

, Φ2
{K`Υ2

dΨ

)

if Ψ
M 1 ď

ψmax

M

max
!´

L
?
M?

dψmax

¯

,
φ2

max{K`Υ2

dψmax

)

otherwise
implies

E pF pwagR q ´
pF pw˚q À D

?
dmin

# ?
Ψ

?
M 1

,

?
ψmax
?
M

+

, (41)

assuming R ě 1.

2. If, in addition, pF is sµ-strongly convex, then running a multi-stage implementation of Algorithm 2
on pFβ with β :“ sµĂML2

drΨ
yields

E pF pwagR q ´
pF pw˚q À ∆ exp

¨

˝´R

d

drΨ

ĂML2

˛

‚

`
1

sµ

„

min

"

pΦ2{KRq ` dΨ

M 1
,
pφ2

max{KRq ` dψmax

M

*

`
Υ2

MR



, (42)

where F pw0q ´ F
˚ ď ∆ ď LD.

In particular, choosing R “

$

’

&

’

%

max

"

b

M 1L2

dΨ ln
´

∆sµM 1

dΨ

¯

, Φ2
{K`Υ2

dΨ

*

if Ψ
M 1 ď

ψmax

M

max
!b

ML2

dψmax
ln
´

∆sµM
dψmax

¯

,
φ2

max{K`Υ2

dψmax

)

otherwise
implies

E pF pwagR q ´
pF pw˚q À

d

sµ
min

"

Ψ

M 1
,
ψmax

M

*

, (43)

provided R ě 1.

Proof. The proof is very similar to the proof of Theorem 2.1. We apply Theorem D.2 to the β-smooth
objective rFβ (for convex case) or pFβ (for strongly convex) and use Lemma D.9. This ensures that
excess risk with respect to pF increases by at most L2{β, which is bounded by the smooth convex (or
strongly convex, respectively) excess risk bound by our choice of β.
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E Lower Bounds for LDP FL

E.1 Example of LDP Algorithm that is Not Compositional

This example is a simple modification of [39, Example 2.2] (adapted to our definition of composition-
ality for δ0 ą 0). Given any C ą 0, set d :“ 2C2 and let X “ te1, ¨ ¨ ¨ edu Ă t0, 1u

d be the standard
basis for Rd. Let n “ 1 and X “ px1, ¨ ¨ ¨ , xN q P XN . For all i P rN s let Qpiq : X Ñ X be the
randomized response mechanism that outputs Qpiqpxiq “ xi with probability eε0

eε0`d´1 and otherwise
outputs a uniformly random element of X ztxiu. Note that Qpiq is ε0-DP, hence pε0, δ0q-DP for any
δ0 ą 0. Consider the following d-round algorithm A : XN Ñ ZdˆN where Z “ Rd.

Algorithm 3 LDP Algorithm that is not C-compositional
1: for r P rds do
2: for i P N do
3: if xi “ er then
4: Rpiqr pxiq :“ Qpiqpxiq.
5: else
6: Rpiqr pxiq :“ 0 P Rd.
7: end if
8: end for
9: end for

10: return tRpiqr pxiquiPrNs,rPrds.

Since each client’s data is only referenced once and Qpiq is ε0-DP, we have εr0 “ ε0 and A is

pε0, δ0q-DP. However,
b

řd
r“1pε

r
0q

2 “
a

dε20 “
?

2Cε0 ą Cε0, so that A is not C-compositional.

E.2 Proof of Theorem 3.1

To prove Theorem 3.1, we first analyze the central privacy guarantees of A P Apε0,δ0q when client
data sets X1, ¨ ¨ ¨ , XN are shuffled each round before the randomizers are applied, showing that
privacy amplifies to ε “ rOp ε0?

N
q (Theorem E.1). This is an extension of [25, Theorem 3.8] to n ą 1

and fully interactive compositional algorithm. The second step is to apply the CDP lower bounds of
[8, Appendix C] to As, the “shuffled” version of A. 10 This implies that the shuffled algorithm As
has excess population loss that is lower bounded as in Theorem 3.1. The final step in the proof is to
observe that the i.i.d. assumption implies that As and A have the same expected population loss.

Step 1: Privacy amplification by shuffling. We begin by stating and proving the amplification by
shuffling result that we will leverage to obtain Theorem 3.1:

Theorem E.1. Let A P Apε0,δ0q such that ε0 P p0,
?
N s and δ0 P p0, 1q. Assume that in each

round, the local randomizers Rpiqr pZp1:r´1q, ¨q : Xn Ñ Z are pεr0, δ
r
0q-DP for all i P rN s, r P

rRs, Zp1:r´1q P Zr´1ˆN with εr0 ď
1
n . If A is compositional, then assume δr0 P r

2e´N{16

Nn , 1
14nNR s

and denote δ :“ 14Nn
řR
r“1 δ

r
0; if instead A is sequentially interactive, then assume δ0 “ δr0 P

r 2e
´N{16

Nn , 1
7Nn s and denote δ :“ 7Nnδ0. Let As : XÑW be the same algorithm as A except that

in each round r, As draws a random permutation πr of rN s and applies Rpiqr to Xπrpiq instead of

Xi. Then, As is pε, δq-CDP, where ε “ O

ˆ

ε0 lnp1{nNδmin
0 q

?
N

˙

, and δmin
0 :“ minrPrRs δ

r
0 . Note that

for sequentially interactive A, δmin
0 “ δ0.

To the best of our knowledge, the restriction on εr0 is needed to obtain ε “ rOpε0{
?
Nq in all works

that have analyzed privacy amplification by shuffling [22, 25, 6, 14, 7], but these works focus on
10While [8] does not explicitly prove lower bounds for strongly convex CDP SCO, their proof technique

easily extends to strongly convex loss, implying that EF p pwRq ´ F pw˚q “ rΩ
´´

L2

µnN
` LD d

ε2n2N2

¯¯

for
pε, δq CDP algorithms with δ “ op1{nNq, by [9, Theorem 5.5].
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the sequentially interactive case with n “ 1, so the restriction amounts to ε0 À 1 (or ε0 “ rOp1qq.
Theorem E.1 will follow as a pair of corollaries (Corollary E.1 and Corollary E.2) from the following
result which analyzes the privacy amplification in each round:

Theorem E.2 (Single round privacy amplification by shuffling). Let εr0 ď ln
´

N
16 lnp2{δrq

¯

{n, r P N

and letRpiqr pZ, ¨q : Xn Ñ Z be an pεr0, δ
r
0q-DP local randomizer for all Z “ Z

p1:Nq
p1:r´1q P Z

pr´1qˆN

and i P rN s, where X is an arbitrary set. Given a distributed data set X “ pX1, ¨ ¨ ¨ , XN q P

XNˆn and Z “ Z
p1:Nq
p1:r´1q, consider the shuffled algorithm Ars : XnˆN ˆ Zpr´1qˆN Ñ ZN that

first samples a random permutation π of rN s and then computes Zr “ pZ
p1q
r , ¨ ¨ ¨ , Z

pNq
r q, where

Z
piq
r :“ Rpiqr pZ, Xπpiqq. Then, Ars is pεr, rδrq-CDP, where

εr :“ ln

«

1`

ˆ

eε
r
0 ´ 1

eε
r
0 ` 1

˙

˜

8
a

enε
r
0 lnp4{δrq
?
N

`
8enε

r
0

N

¸ff

, (44)

and rδr :“ δr ` 2Nnepn´1qεr0δr0. In particular, if εr0 “ O
`

1
n

˘

, then

εr “ O

˜

εr0
a

lnp1{δrq
?
N

¸

. (45)

Further, if εr0 ď 1{n, then setting δr :“ Nnδr0 implies that

εr “ O

˜

εr0
a

lnp1{nNδr0q?
N

¸

(46)

and rδr ď 7Nnδr0 , which is in p0, 1q if we assume δr0 P p0,
1

7Nn q.

We sometimes refer to the algorithm Ars as the shuffled algorithm derived from the randomizers
tRpiqr u. From Theorem E.2, we obtain:

Corollary E.1 (R-round privacy amplification for compositional algorithms). Let A : XnˆN Ñ

ZRˆN be an R-round pε0, δ0q-LDP and C-compositional algorithm such that ε0 P p0,
?
N s

and δ0 P p0, 1q, where X is an arbitrary set. Assume that in each round, the local random-
izers Rpiqr pZp1:r´1q, ¨q : Xn Ñ Z are pεr0, δ

r
0q-DP for i P rN s, r P rRs, where εr0 ď 1

n ,

and δr0 P r
2e´N{16

Nn , 1
14nNR s. Then, the shuffled algorithm As : XnˆN Ñ ZRˆN derived from

tRpiqr pZp1:r´1q,¨quiPrNs,rPrRs (i.e. As is the composition of the R shuffled algorithms Ars defined

in Theorem E.2) is pε, δq-CDP, where δ ď 14Nn
řR
r“1 δ

r
0 and ε “ O

ˆ

ε0 lnp1{nNδmin
0 q

?
N

˙

, where

δmin
0 :“ minrPrRs δ

r
0.

Proof. Let δ1 :“
ř

rNnδ
r
0 and δr :“ Nnδr0. Then the (central) privacy loss of the full R-round

shuffled algorithm is bounded as

ε ď 2
ÿ

r

pεrq2 `
c

2
ÿ

r

pεrq2 lnp1{δ1q

“ O

˜

ÿ

r

ˆ

pεr0q
2 lnp1{δrq

N

˙

`

d

ÿ

r

pεr0q
2 lnp1{δrq lnp1{δ1q

N

¸

“ O

ˆ

ε0 lnp1{nNδmin
0 q

?
N

˙

,

where the three (in)equalities follow in order from the Advanced Composition Theorem [20], (46)
in Theorem E.2, and C-compositionality of A combined with the assumption ε0 À

?
N . Also,

δ “ δ1`
ř

r
rδr by the Advanced Composition Theorem, where rδr ď 7Nnδr0 by Theorem E.2. Hence

δ ď 14Nn
ř

r δ
r
0.
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Remark E.1. The upper bounds assumed on δr0 and δr in Theorem 3.1 ensure that δ P p0, 1q and
that the lower bounds of [9] apply (see Theorem E.3). These assumptions are not very restrictive in
practice, since δr0, δ0 ! 1 is needed for meaningful privacy guarantees (see e.g. [20, Chapter 2]) and
R must be polynomial for the algorithm to run. Also, since N " 1 is the regime of interest (otherwise
if N “ rOp1q, the CDP lower bounds of [8] already match our upper bounds up to logarithms), the
requirement that N be larger than 16 lnp2{δmin

0 nq is unimportant.11

Corollary E.2. (R round privacy amplification for sequentially interactive algorithms) Let A :
XnˆN Ñ ZRˆN be an R-round pε0, δ0q-LDP sequentially interactive with ε0 ď 1{n and δ0 P
r 2e

´N{16

Nn , 1
7Nn s. Then the shuffled algorithm derived from A is pε, δq-CDP, where

ε “ O

˜

ε0
a

lnp1{nNδ0q
?
N

¸

,

and δ ď 7Nnδ0.

Proof. For sequentially interactive algorithms, we have εr0 “ ε0 and δr0 “ δ0 since each client’s local
data is only referenced once throughout the algorithm. Likewise, εr “ ε and δr “ δ represent the
total central privacy loss of each client during the algorithm. Thus, the result is immediate from (46)
in Theorem E.2.

We now turn to the proof of Theorem E.2, which uses the techniques from [25]. First, we’ll
need some more notation. The privacy relation in (3) between random variables P and Q can be
characterized by the hockey-stick divergence: DeεpP }Qq :“

ş

maxt0, ppxq ´ eεqpxqudx, where p
and q denote the probability density or mass functions of P and Q respectively. Then P »

pε,δq
Q iff

maxtDeεpP }Qq, DeεpQ}P qu ď δ. Second, recall the total variation distance between P and Q is
given by TV pP,Qq “ 1

2

ş

R |ppxq ´ qpxq|dx. Third, we recall the notion of group privacy:

Definition 6 (Group DP). A randomized algorithm A : XN Ñ Z is pε, δq group DP for groups of
size N if ApXq »

pε,δq
ApX1q for all X,X1 P XN .

We’ll also need the following stronger version of a decomposition from [41] and [57, Lemma 3.2].
Lemma E.1 ([41]). Let R0,R1 : Xn Ñ Z be local randomizers such that R0pX0q and R1pX1q

are pε, 0q indistinguishable. Then, there exists a randomized algorithm U : tX0, X1u Ñ Z such that
R0pX0q “

eε

eε`1UpX0q `
1

eε`1UpX1q and R1pX1q “
1

eε`1UpX0q `
eε

eε`1UpX1q.

Lemma E.1 follows from the proof of [57, Lemma 3.2], noting that the weaker hypothesis assumed
in Lemma E.1 sufficient for all steps to go through.
Definition 7 (Deletion Group DP). AlgorithmR : Xn Ñ Z is pε, δq deletion group DP for groups
of size n if there exists a reference distribution ρ such thatRpXq »

pε,δq
ρ for all X P Xn.

It’s easy to show that ifR is deletion group DP for groups of size n, thenR is p2ε, p1` eεqδq group
DP for groups of size n. In addition, we have the following result:
Lemma E.2. Let X0 P Xn. If R : Xn Ñ Z is an pε, δq-DP local randomizer, then R is
pnε, nepn´1qεδq deletion group DP for groups of size n with reference distribution RpX0q (i.e.
RpXq »

prε,rδq
RpX0q for all X P Xn, where rε “ nε and rδ “ nepn´1qεδ).

Proof. By group privacy (see e.g. [42, Theorem 10]), and the assumption that R is pε, δq-DP, it
follows thatRpXq andRpX 1q are pnε, nepn´1qεδq indistinguishable for allX,X 1 P Xn. In particular,
taking X 1 :“ X0 completes the proof.

Lemma E.3. LetRpiq : Xn Ñ Z be randomized algorithms (i P rN s) and let As : XnˆN Ñ ZN
be the shuffled algorithm AspXq :“ pRp1qpXπp1qq, ¨ ¨ ¨RpNqpXπpNqqq derived from tRpiquiPrNs

11This assumption is needed to ensure that the condition on εr0 in Theorem E.2 is satisfied; it is inherited from
[25, Theorem 3.8].
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for X “ pX1, ¨ ¨ ¨ , XN q, where π is a uniformly random permutation of rN s. Let X0 “

pX0
1 , X2, ¨ ¨ ¨ , XN q and X1 “ pX1

1 , X2, ¨ ¨ ¨ , XN q, δ P p0, 1q and p P r 16 lnp2{δq
N , 1s. Suppose

that for all i P rN s, X P XnztX1
1 , X

0
1u, there exists a distribution LOpiqpXq such that

RpiqpXq “ p

2
RpiqpX0

1 q `
p

2
RpiqpX1

1 q ` p1´ pqLO
piqpXq.

Then AspX0q »
pε,δq
AspX1q, where

ε ď ln

˜

1`
8
a

lnp4{δq
?
pN

`
8

pN

¸

.

Proof. The proof mirrors the proof of [25, Lemma 3.3] closely, replacing their notation with ours.
Observe that the DP assumption in [25, Lemma 3.3] is not actually needed in the proof.

Lemma E.4. Let R : Xn Ñ Z be pε, δq deletion group DP for groups of size n with reference
distribution ρ. Then there exists a randomizerR1 : Xn Ñ Z such that:
(i)R1 is pε, 0q deletion group DP for groups of size n with reference distribution ρ; and
(ii) TV pRpXq,R1pXqq ď δ.
In particular,R1 is p2ε, p1` eεqδq group DP for groups of size n (by i).

Proof. The proof is nearly identical to the proof of [25, Lemma 3.7].

We also need the following stronger version of [25, Lemma 3.7]:
Lemma E.5. If RpX0

1 q »
pε0,δ0q

RpX1
1 q, then there exists a randomizer R1 : Xn Ñ Z such that

R1pX1
1 q »
pε0,0q

RpX0
1 q and TV pR1pX1

1 q,RpX1
1 qq ď δ0.

Proof. The proof follows the same techniques as [25, Lemma 3.7], noting that the weaker hypothesis
in Lemma E.5 is sufficient for all the steps to go through and that the assumption of n “ 1 in [25] is
not needed in the proof.

Lemma E.6 ([20], Lemma 3.17). Given random variables P,Q, P 1 and Q1, if DeεpP
1, Q1q ď δ,

TV pP, P 1q ď δ1, and TV pQ,Q1q ď δ1, then DeεpP,Qq ď δ ` peε ` 1qδ1.
Lemma E.7 ([25], Lemma 2.3). Let P and Q be distributions satisfying P “ p1´ qqP0 ` qP1 and
Q “ p1´ qqP0 ` qQ1 for some q P r0, 1s. Then for any ε ą 0, if ε1 “ logp1` qpeε ´ 1qq, then

Deε1 pP ||Qq ď qmaxtDeεpP1||P0q, DeεpP0||Q1qu ď qDeεpP1||Q1q.

We are now ready to prove Theorem E.2:

Proof of Theorem E.2. Let X0,X1 P XnˆN be adjacent (in the CDP sense) distributed data sets (i.e.
|X0∆X1| ď 1). Assume WLOG that X0 “ pX0

1 , X2, ¨ ¨ ¨ , XN q and X1 “ pX1
1 , X2, ¨ ¨ ¨ , XN q,

where X0
1 “ px1,0, x1,2, ¨ ¨ ¨ , x1,nq ‰ px1,1, x1,2, ¨ ¨ ¨ , x1,nq. We can also assume WLOG that

Xj R tX
0
1 , X

1
1u for all j P t2, ¨ ¨ ¨ , Nu by re-defining X andRpiqr if necessary; details omitted here.

Fix i P rN s, r P rRs,Z “ Z1:r´1 “ Z
p1:Nq
p1:r´1q P Z

pr´1qˆN , denote RpXq :“ Rpiqr pZ, Xq for
X P Xn, and AspXq :“ ArspZ1:r´1,Xq. Draw π uniformly from the set of permutations of rN s.
Now, sinceR is pε0, δ0q-DP,RpX1

1 q »
pεr0,δ

r
0q
RpX0

1 q, so by Lemma E.5, there exists a local randomizer

R1 such thatR1pX1
1 q »
pεr0,0q

RpX0
1 q and TV pR1pX1

1 q,RpX1
1 qq ď δr0.

Hence, by Lemma E.1, there exist distributions UpX0
1 q and UpX1

1 q such that

RpX0
1 q “

eε
r
0

eε
r
0 ` 1

UpX0
1 q `

1

eε
r
0 ` 1

UpX1
1 q (47)

and

R1pX1
1 q “

1

eε
r
0 ` 1

UpX0
1 q `

eε
r
0

eε
r
0 ` 1

UpX1
1 q. (48)
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Denote rε0 :“ nεr0 and rδ0 :“ nepn´1qεr0δr0.By convexity of hockey-stick divergence and the hypothesis
that R is pεr0, δ

r
0q-DP (hence RpXq »

pĂε0,Ăδ0q

RpX0
1 q,RpX1

1 q for all X by Lemma E.2), we have

RpXq »
pĂε0,Ăδ0q

1
2 pRpX

0
1 q `RpX1

1 qq :“ ρ for all X P Xn. That is, R is prε0, rδ0q deletion group DP

for groups of size n with reference distribution ρ. Thus, Lemma E.4 implies that there exists a local
randomizerR2 such thatR2pXq and ρ are prε0, 0q indistinguishable and TV pR2pXq,RpXqq ď rδ0
for all X. Then by the definition of prε0, 0q indistinguishability, for all X there exists a “left-over”
distribution LOpXq such that R2pXq “ 1

eĂε0
ρ` p1´ 1{eĂε0qLOpXq “ 1

2eĂε0
pRpX0

1 q `RpX1
1 qq `

p1´ 1{eĂε0qLOpXq.

Now, define a randomizer L by LpX0
1 q :“ RpX0

1 q, LpX1
1 q :“ R1pX1

1 q, and

LpXq :“
1

2eĂε0
RpX0

1 q `
1

2eĂε0
R1pX1

1 q ` p1´ 1{eĂε0qLOpXq

“
1

2eĂε0
UpX0

1 q `
1

2eĂε0
UpX1

1 q ` p1´ 1{eĂε0qLOpXq (49)

for all X P XnztX0
1 , X

1
1u. (The equality follows from (47) and (48).) Note

that TV pRpX0
1 q,LpX0

1 qq “ 0, TV pRpX1
1 q,LpX1

1 qq ď δr0, and for all X P

XnztX0
1 , X

1
1u, TV pRpXq,LpXqq ď TV pRpXq,R2pXqq ` TV pR2pXq,LpXqq ď rδ0 `

1
2eĂε0

TV pR1pX1
1 q,RpX1

1 qq “ pne
pn´1qεr0 ` 1

2enε
r
0
qδr0 ď p2ne

pn´1qεr0qδr0 “ 2 rδ0.

Keeping r fixed (omitting r scripts everywhere), for any i P rN s and Z :“ Z1:r´1 P Zpr´1qˆN ,
let LpiqpZ, ¨q, U piqpZ, ¨q, and LOpiqpZ, ¨q denote the randomizers resulting from the process de-
scribed above. Let AL : XnˆN Ñ ZN be defined exactly the same way as Ars :“ As (same π)
but with the randomizers Rpiq replaced by Lpiq. Since As applies each randomizer Rpiq exactly
once and Rp1qpZ, Xπp1q, ¨ ¨ ¨RpNqpZ, XπpNqq are independent (conditional on Z “ Z1:r´1) 12, we
have TV pAspX0q,ALpX0q ď Np2nepn´1qεr0qδr0 and TV pAspX1q,ALpX1q ď Np2nepn´1qεr0qδr0
(see [23]). Now we claim that ALpX0q and ALpX1q are pεr, δrq indistinguishable for any
δr ě 2e´Ne

´nεr0 {16. Observe that this claim implies that AspX0q and AspX1q are pεr, rδrq indis-
tinguishable by Lemma E.6 (with P 1 :“ ALpX0q, Q

1 :“ ALpX1q, P :“ AspX0q, Q :“ AspX1q.)
Therefore, it remains to prove the claim, i.e. to show that Deεr pALpX0q,ALpX1q ď δr for any
δr ě 2e´Ne

´nεr0 {16.

Now, as in the proof of [25, Theorem 3.1], define LpiqU pZ, Xq :“

$

&

%

U piqpZ, X0
1 q if X “ X0

1

U piqpZ, X1
1 q if X “ X1

1

LpiqpZ, Xq otherwise.
. For

any inputs Z,X, let AU pZ,Xq be defined exactly the same as AspZ,Xq (same π) but with the
randomizersRpiq replaced by LpiqU . Then by (47) and (48),

ALpX0q “
eε
r
0

eε
r
0 ` 1

AU pX0q`
1

eε
r
0 ` 1

AU pX1q andALpX1q “
1

eε
r
0 ` 1

AU pX0q`
eε
r
0

eε
r
0 ` 1

AU pX1q.

(50)

Then by (49), for any X P XnztX0
1 , X

1
1u and any Z “ Z1:r´1 P Zpr´1qˆN , we have LpiqU pZ, Xq “

1
2eĂε0
LpiqU pZ, X0

1 q `
1

2eĂε0
LpiqU pZ, X1

1 q ` p1 ´ e´Ăε0qLOpiqpZ, Xq. Hence, Lemma E.3 (with p :“

e´Ăε0 “ e´nε
r
0 implies that AU pX0q and AU pX1q) are

˜

log

˜

1`
8
a

eĂε0 lnp4{δrq
?
N

`
8eĂε0

N

¸

, δr

¸

indistinguishable for any δr ě 2e´Ne
´nεr0 {16. Applying Lemma E.7 with P :“ ALpX0q, Q “

ALpX1q, q “ eε
r
0´1

eε
r
0`1

, P1 “ AU pX0q,Q1 “ AU pX1q, and P0 “
1
2 pP1`Q1q yields thatALpX0q and

ALpX1q are pεr, δrq indistinguishable, as desired. This proves the claim and hence (by Lemma E.6,
as described earlier) the theorem.

12This follows from the assumption given in the lead up to Definition 2 that RpiqpZ1:r´1, Xq is conditionally
independent of X 1 given Z1:r´1 for all Z1:r´1 and X ‰ X 1.
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Step 2: Combine Theorem E.1 with the following CDP SCO lower bounds which follow from [9,
Theorems 5.3/5.5], [8, Appendix C], and the non-private SCO lower bounds (see [59, 3]) 13:
Theorem E.3. [8, 9] Let µ,D, ε ą 0, L ě µD, and δ “ op1{nNq. Consider X :“ t´D?

d
, D?

d
ud Ă

Rd andW :“ B2p0, Dq Ă Rd. Let A : XnN ÑW be any pε, δq-CDP algorithm. Then:
1. There exists a (µ “ 0) convex, linear (β-smooth for any β), L-Lipschitz loss f :W ˆ X Ñ R and
a distribution D on X such that the expected loss of A is lower bounded as

EF p pwRq ´ F pw˚q “ rΩ

˜

LD

˜

1
?
Nn

`min

#

1,

?
d

εnN

+¸¸

.

2. There exists a µ-strongly convex, µ-smooth, L-Lipschitz loss f :W ˆ X Ñ R and a distribution
D on X such that the expected loss of A is lower bounded as

EF p pwRq ´ F pw˚q “ rΩ

ˆ

L2

µnN
` LDmin

"

1,
d

ε2n2N2

*˙

.

Namely, if A is pε0, δ0q-LDP, then (under the hypotheses of Theorem 3.1) As is pε, δq-CDP for ε “
rOpε0{

?
Nq, so Theorem E.3 implies that the excess loss of As is lower bounded as in Theorem E.3

with ε replaced by ε0{
?
N .

Step 3: We simply observe that when the expectation is taken over the randomness in sampling
X „ DnˆN , the expected excess loss of As is identical to that of A (using the i.i.d. assumption).
This completes the proof of Theorem 3.1.

E.3 Lower bounds for LDP Federated ERM

Formally, define the algorithm class Bε0,δ0 :“ B to consist of those algorithms A P Aε0,δ0 “ A
such that for any X P X, f P FL,D, the expected empirical loss of the shuffled algorithm As
derived from A is upper bounded by the expected loss of A: EA,tπrur

pF pAspXqq À EA pF pApXqq.
Here As denotes the algorithm that applies the randomizerRpiqr to Xπrpiq for all i, r, but otherwise
behaves exactly like A. This is not a very constructive definition but we will describe examples
of algorithms in B. B includes all compositional or sequentially interactive LDP algorithms that
are symmetric with respect to each of the N clients, meaning that the aggregation functions gr are
symmetric (i.e. grpZ1, ¨ ¨ ¨ , ZN q “ grpZπp1q, ¨ ¨ ¨ZπpNqq for all permutations π) and in each round

r the randomizers Rpiqr “ Rr are the same for all clients i P rN s. (Rpiqr can still change with r
though.) For example, the three algorithms presented in Section 2 are all in B. This is because the
aggregation functions used in each round are simple averages of the M “ N noisy gradients received
from all clients (and they are compositional) and the randomizers in round r are identical when
εi “ ε0, δi “ δ0, ni “ n,Xi “ X : each adds the same gaussian noise to the stochastic gradients. B
also includes sequentially interactive algorithms that choose the order in which clients are processed
uniformly at random. This is because the distributions of the updates of A and As are both averages
over all permutations of rN s of the conditional (on π) distributions of the randomizers applied to the
π-permuted database.

Theorem E.4. Let n, d,N,R P N, ε0 P p0,
?
N s, δ0 P p0, 1q and A P Bpε0,δ0q such that in

every round r P rRs, the local randomizers Rpiqr pZp1:r´1q, ¨q : Xn Ñ Z are pεr0, δ
r
0q-DP for

all i P rN s, Zp1:r´1q P Zr´1ˆN , with εr0 ď
1
n , and δr0 ě

2e´N{16

Nn . Assume moreover that
ř

r δ
r
0 “ op1{n2N2q if A is compositional; if A is sequentially interactive, assume instead that

δ0 “ op1{n2N2q. Then there exists a (linear, hence β-smooth @β ě 0) loss function f P FL,D and a
database X P XnN for some X such that the excess empirical loss of A is lower bounded as:

E pF p pwRq ´ pF pw˚q “ rΩ

˜

LDmin

#

1,

?
d

ε0n
?
N

+¸

.

13Part 2 of Theorem E.3 follows from the alternate rescaling of [9]’s hard instance in which gpw, xq “
1
2
}w ´ x}2 on B2p0, 1q ˆ X is scaled to fpw, xq “ µgpw, xq on W ˆ X given in Theorem E.3. Then f is

µD-Lipschitz, µ-smooth, µ-strongly convex, and the excess empirical risk in [9, Theorem 5.5] is scaled by
µD2

“ LD. See also [52, Proposition 2.7] and its proof.
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Furthermore, there exists another (µ-smooth) f P Gµ,L,D such that

E pF p pwRq ´ pF pw˚q “ rΩ

ˆ

LDmin

"

1,
d

ε20n
2N

*˙

.

Here, the rΩ notation hides logarithmic factors depending on δr0, n, and N .

Proof. Step 1 is identical to Step 1 of the proof of Theorem E.4. Step 2 is very similar, but uses
Theorem E.5 (below) instead of Theorem E.3 to lower bound the excess empirical loss of As. Finally,
the definition of B implies that the excess risk of A is the same as that of As, hence the lower bound
also applies to A.

Theorem E.5. [9] Let µ,D, ε ą 0, L ě µD, and δ “ op1{nNq. Consider X :“ t´D?
d
, D?

d
ud Ă Rd

andW :“ B2p0, Dq Ă Rd. Let A : XnN ÑW be any pε, δq-CDP algorithm. Then:
1. There exists a (µ “ 0) convex, linear (β-smooth for any β), L-Lipschitz loss f :W ˆ X Ñ R and
a database X P XnN such that the expected empirical loss of A is lower bounded as

E pF p pwRq ´ pF pw˚q “ rΩ

˜

LDmin

#

1,

?
d

εnN

+¸

.

2. There exists a µ-strongly convex, µ-smooth, L-Lipschitz loss f : W ˆ X Ñ R and a database
X P XnN such that the expected empirical loss of A is lower bounded as

E pF p pwRq ´ pF pw˚q “ rΩ

ˆ

LDmin

"

1,
d

ε2n2N2

*˙

.

F Proof of Theorem 4.1

For this result, we will just prove the stated version with balanced data and same privacy needs across
clients, and non-random Mr “M ď N (same setup as [32]).

Theorem 4.1 [Complete Version] Let f : W ˆ X Ñ Rd be β-smooth, L-Lipschitz, and
µ-strongly convex (with µ “ 0 for convex case). Assume ε ď lnp2{δq, δ P p0, 1q, and
M ě 16 lnp18RM2{Nδq for R specified below. Then, there is a constant C ą 0 such that
setting σ2

i :“ CL2RM lnpRM2
{Nδq lnpR{δq lnp1{δq

n2N2ε2 ensures that the shuffled version of Algorithm 1 is
pε, δq-CDP. Moreover, there exist ηr “ η and tγruR´1

r“0 such that the shuffled version of Algorithm 1
achieves the following upper bounds on excess loss:
1. (Convex) Setting R :“ max

´

n2N2ε2

M , NM , min
!

n, ε
2n2N2

dM

)

, βDL min
!?

nM, εnN?
d

)¯

yields

EF p pwRq ´ F pw˚q “ O

˜

LD

˜

1
?
nM

`

a

d lnpRM2{Nδq lnpR{δq lnp1{δq

εnN

¸¸

. (51)

2. (Strongly convex) R :“ max
´

n2N2ε2

M , NM , 8β
µ ln

´

βD2µε2n2N2

dL2

¯

,min
!

n, ε
2n2N2

dM

)¯

yields

EF p pwRq ´ F pw˚q “ rO

ˆ

L2

µ

ˆ

1

nM
`
d lnpRM2{Nδq lnpR{δq lnp1{δq

ε2n2N2

˙˙

. (52)

Proof of Theorem 4.1. We fix K “ 1 for simplicity, but note that K ą 1 can also be used (see [32,
Lemma 3] for details), which would improve the communication complexity of our algorithm by a
factor of K in some parameter regimes.

Privacy: The privacy proof is similar to the proof of [32, Theorem 1], except we replace their use of
[6] (for pure DP randomizers) with [25, Theorem 3.8] for our approximate DP randomizer (gaussian
mechanism). Observe that in each round r, the model updates of the shuffled algorithm Ars can
be viewed as post-processing of the composition MrpXq “ SM ˝ sampM,N pZ

p1q
r , ¨ ¨ ¨ , Z

pNq
r q,

where SM uniformly randomly shuffles the M received reports, sampM,N is the mechanism that
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chooses M reports uniformly at random from N , and Zpiqr “ samp1,np pRrpxi,1q, ¨ ¨ ¨ pRrpxi,nqq,
where pRpxq :“ ∇fpwr, xq ` u and u „ Np0, σ2Idq. Recall ([20, Theorem A.1]) that σ2 “

8L2 lnp2{xδ0q

xε0
2 suffices to ensure that pRr is ppε0, pδ0q-DP if pε0 ď 1. Now note thatMrpXq “ rRM pSM ˝

sampM,N pX1, ¨ ¨ ¨XN q, where rR : Xn Ñ Z is given by X ÞÑ samp1,np pRpx1q, ¨ ¨ ¨ , pRpxnqq
and rRM : XnM Ñ ZM is given by X ÞÑ p rRpX1q, ¨ ¨ ¨ rRpXM qq for any X “ pX1, ¨ ¨ ¨ , XM q P

XnM . This is because we are applying the same randomizer (same additive Gaussian noise) across
clients and the operators SM and rRM commute. (Also, applying a randomizer to all N clients
and then randomly choosing M reports is equivalent to randomly choosing M clients and then
applying the same randomizer to all M of these clients.) Therefore, conditional on the random
subsampling of M out of N clients (denoted pX1, ¨ ¨ ¨ , XM q for convenience), [25, Theorem 3.8]
implies that p pRpxπp1q,1q, ¨ ¨ ¨ , pRpxπp1q,nq, ¨ ¨ ¨ , ¨ ¨ ¨ , pRpxπpMq,1q, ¨ ¨ ¨ , pRpxπpMq,nqq is ppε, pδq-CDP,

where pε “ O

ˆ

xε0
?

lnp1{Mxδ0q?
M

˙

and pδ “ 9M pδ0, provided pε0 ď 1 and M ě 16 lnp2{ pδ0q (which

we will see is satisfied by our assumption on M ). Next, privacy amplification by subsampling
(see [71] and [32, Lemma 3]) clients and local samples implies that Mr is pεr, δrq-CDP, where

εr “ 2pεM
nN “ O

ˆ

pε0

?
M lnp1{Mxδ0q

nN

˙

and δr “ M
nN

pδ “ 9M2

nN
pδ0. Finally, by the advanced composition

theorem [20, Theorem 3.20], to ensure As is pε, δq-CDP, it suffices to make each round pεr :“
ε

2
?

2R lnp1{δq
, δr :“ δ{2Rq-CDP. Using the two equations to solve for pε0 “

CnNε?
R lnp1{δq lnpRM{nNδqM

for some C ą 0 and pδ0 “
nNδ

18RM2 , we see that σ2 “ O
´

L2 lnpRM2
{Nδq lnpR{δq lnp1{δqqRM

n2N2ε2

¯

ensures
thatAs is pε, δq-CDP, i.e. thatA is pε, δq-SDP. Note that our choices of R in the theorem (specifically
R ě N{M and R ě n2N2ε2

M ) ensure that pδ0, δ ď 1 and pε0 À 1, so that [25, Theorem 3.8] indeed
gives us the amplification by shuffling result used above.

Excess risk: The proof is very similar to the proof of Theorem D.1, except σ2 is now smaller.
Convex case: Set γr “ γ “ 1{R for all r. Now (26), Lemma D.2, and Lemma D.1 together imply
for any η ď 1{4β that

EF p pwRq ´ F pw˚q À
L2Rη

nM
`
D2

ηR
` η

ˆ

L2{MK `
dσ2

M

˙

.

Now plugging in η :“ min

"

1{4β, D
?
M

LR min

"

?
n, εnN?

dM lnpRM2{Nδq lnpR{δq lnp1{δq

**

yields

EF p pwRq ´ F pw˚q À LD

˜

max

#

1{
?
nM,

a

d lnpRM2{Nδq lnpR{δq lnp1{δq

εnN

+¸

`
LD

R
?
M

min

#

?
n,

εnN
a

dM lnpRM2{Nδq lnpR{δq lnp1{δq

+

`
βD2

R
.

Then one can verify that plugging in the prescribed R yields the stated excess population loss bound.
µ-strongly convex case: Let X P XnN and denote the empirical risk minimizer by rw. Then for any
ηt ď 1{4β, by (23) and the i.i.d assumption (so Υ2 “ 0), we have (for all t)

E}wt`1 ´ rw}2 ď p1´ µηtqE}wt ´ rw}2 ´ ηtpE pF pwtq ´ pF˚q ` 2η2
t

ˆ

4L2

M
`
dσ2

2M

˙

.

Then by Lemma D.8 with a “ µ, b “ 1, c “ 2
´

4L2

M `
dCL2R lnpRM2

{Nδq lnpR{δq lnp1{δq
ε2n2N2

¯

, g “ 4β,
and T “ R, there exists a constant stepsize rη and averaging weights γr such that

E pF p pwRq´ pF pw˚q “ rO

ˆ

βD2 exp

ˆ

´µR

4β

˙

`
L2

µ

ˆ

1

MR
`
d lnpRM2{Nδq lnpR{δq lnp1{δq

ε2n2N2

˙˙

by Jensen’s inequality. (See Lemma D.8 for the explicit rη and γr.) Hence taking η “ mint1{4β, rηu
and applying Lemma D.1 and Lemma D.2 yields

EF p pwRq´F pw˚q “ rO

ˆ

βD2 exp

ˆ

´µR

4β

˙

`
L2

µ

ˆ

1

MR
`
d lnpRM2

{Nδq lnpR{δq lnp1{δq

ε2n2N2

˙

`
L2

µMn

˙

.

Then one verifies that the prescribed R is large enough to achieve the stated excess population loss
bound.
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G Experimental Details and Additional Results

Code for all of the experiments in this paper can be found at:
https://github.com/lowya/Locally-Differentially-Private-Federated-Learning

G.1 Linear Regression with Health Insurance Data

Data set: The data (https://www.kaggle.com/mirichoi0218/insurance), which is available
under an Open Database license, consists of rN “ 1338 observations. The target variable y is medical
charges. There are d´ 1 “ 6 features: age, sex, BMI, number of children, smoker, and geographic
region.

Experimental setup: For a givenN,we grouped data intoN (almost balanced) clients by sorting y in
ascending order and then dividing into N groups, the first N ´ 1 of size r1338{N s and the remaining
points in the last client. For each N, we ran experiments with R “ 35. We ran 20 trials, each with a
fresh random train/test (80{20) split. We recorded test error for ε P t0.5, 1, 2.5, 5, 7.5, 10u. We fixed
δi “ 1{n2

i for all experiments.

To estimate υ2
˚, we followed the procedure used in [75], using Newton’s method to compute w˚ and

then averaging }∇ pFipw
˚q}2 over all i P rN s.

Preprocessing: We first numerically encoded the categorical variables and then standardized the
numerical features age and BMI to have zero mean and unit variance.

Gradient clipping: In the absence of a reasonable a priori bound on the Lipschitz parameter of the
squared loss (as is typical for unconstrained linear regression problems with potentially unbounded
data), we incorporated gradient clipping [2] into the algorithms. We then calibrated the noise to the
clip threshold L to ensure LDP. For fairness of comparison, we also allowed for clipping for the
non-private algorithms (if it helped their performance).

Hyperparameter tuning: For each trial and each algorithm, we swept through a log-scale grid of
10 stepsizes and 5 clip thresholds 3 times, selected the parameter w that minimized average (over
3 repetitions) training error (among all 10 x 5 = 50), and computed the corresponding average test
error. The stepsize grids we used ranged from e´8 and e1 for (LDP) MB-SGD and from e´10 to 1
for (LDP) Local SGD. The excess risk (train and test) we computed was for the normalized objective
function F pw,X, Y q “ }Y ´wX}2{2N0 where N0 P t1070, 268u (1070 for train, 268 for test) and
X is N0 ˆ d with d “ 7 (including a column of all 1s) and Y P RN0 . The clip threshold grids were
t100, 10000, 1000000, 100000000, 99999999999999999999999999999999u, with the last element
corresponding to effectively no clipping.

It is important to note that pre-processing and hyperparameter tuning (and estimation of L) were not
done in an LDP manner, since we did not want to detract focus from evaluation of LDP FL algorithms.
14As a consequence, the overall privacy loss for the entire experimental process is higher than the
ε indicated in the plots, which solely reflects the privacy loss from running the FL algorithms with
fixed hyperparameters and (pre-processed) data. This remark also applies to the Logistic Reggression
with MNIST experiment in the next section.

Choice of σ2 and K: We used σ2
i “ σ2 “

256L2 lnp 2.5RK
δn q lnp 2

δ qR
n2ε2 , where L is the clip threshold.

This choice provides LDP by Theorem D.1. 15 We chose the smallest batch size that guarantees LDP,
namely Ki “

εni
4
?

2R lnp2{δq
.

14See [2, 49, 62] and the references therein for discussion of DP PCA and DP hyperparameter tuning.
15The logarithmic term here is slightly tighter than that used in the theoretical portion of this paper. By [71], it

still ensures LDP.
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G.2 Logistic Regression with MNIST

The data set can be downloaded from http://yann.lecun.com/exdb/mnist/. Our code does this for
you automatically. The results of our experiment are shown in Fig. 3. We see that Algorithm 1
continues to outperform LDP Local SGD (FedAvg) across all privacy levels in this experimental setup.
Furthermore, Algorithm 1 even outperforms non-private Local SGD for large ε ě« 12. Additionally,
in the MNIST experiments, we explore the role of communication unreliability (M ă N ) in
performance. Below we present results when M “ 18 and M “ 12 clients are available in each
round.

Figure 3: Test error vs. ε for linear regression on heterogeneous health insurance data. We display 90% error
bars over the 20 trials (train/test splits). δ “ 1{n2.

Experimental setup: To divide the data into N “ 25 clients and for preprocessing, we borrow code
from [75], which can be downloaded from:
https://papers.nips.cc/paper/2020/hash/45713f6ff2041d3fdfae927b82488db8-Abstract.
html. It is available under a Creative Commons Attribution-Share Alike 3.0 license. There are
ni “ n “ 8673 training and 2168 test examples per client; to expedite training, we use only 1{7
of the MNIST samples (n “ 1238 training examples per client). We fix δi “ δ “ 1{n2 and test
ε P t0.75, 1.5, 3, 6, 12, 18u. The maximum υ2

˚ is about 0.17 for this problem (corresponding to each
client having disjoint local data sets/pairs of digits).

Preprocessing: We used PCA to reduce the dimensionality to d “ 50. We used an 80{20 train/test
split for all clients. To improve numerical stability, we clipped the input xw, xy (i.e. projected it onto
r´15, 15s) before feeding into logistic loss.

Hyperparameter tuning: For each algorithm and each setting of ε, R,K, υ2
˚, we swept through

a range of constant stepsizes and ran 3 trials to find the (approximately) optimal stepsize for that
particular algorithm and experiment. We then used the corresponding wR (averaged over the 3 runs)
to compute test error. For (LDP) MB-SGD, the stepsize grid consisted of 10 evenly spaced points
between e´6 and 1. For (LDP) Local SGD, the stepsizes were between e´8 and e´1. We repeated
this entire process twice for two fresh train/test splits of the data and reported the average test error in
our plots.

Choice of σ2 and K: In this experiment, we used smaller noise to get better utility (at the cost of
larger K, hence larger computational cost, which is needed for privacy): σ2

i “ σ2 “
8L2 lnp1{δqR

n2ε2 ,

which provides LDP by [2, Theorem 1] ifK “
n
?
ε

2
?
R

(c.f. [8, Theorem 3.1]). Here L “ 2 maxxPX }x}

is an upper bound on the Lipschitz parameter of the logistic loss and was computed directly from the
training data.

To estimate υ2
˚, we followed the procedure used in [75], using Newton’s method to compute w˚ and

then averaging }∇ pFipw
˚q}2 over all i P rN s.
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