
Architecture Personalization in Resource-constrained
Federated Learning

Mi Luo1, Fei Chen2, Zhenguo Li2, Jiashi Feng1

1National University of Singapore 2Huawei Noah’s Ark Lab
{romyluo7, jshfeng}@gmail.com, {chen.f, li.zhenguo}@huawei.com

Abstract

Federated learning aims to collaboratively train a global model across a set of
clients without data sharing among them. In earlier studies, a global model archi-
tecture, either predefined by experts or searched automatically, is applied to all
the clients. However, this convention is impractical for two reasons: 1) The clients
may have heterogeneous resource constraints and only be able to handle models
with particular configurations, imposing high requirements on the model’s versa-
tility; 2) Data in the real-world federated system are highly non-IID, which means
a model architecture optimized for all clients may not achieve optimal perfor-
mance on personalized data on individual clients. In this work, we address the
above two issues by proposing a novel framework that automatically discovers
personalized model architectures tailored for clients’ specific resource constraints
and data, called Architecture Personalization Federated Learning (APFL). APFL
first trains a sizable global architecture and slims it adaptively to meet compu-
tational budgets on edge devices. Then, APFL offers a communication-efficient
federated partial aggregation (FedPA) algorithm to allow mutual learning among
clients with diverse local architectures, which largely boosts the overall perfor-
mance. Extensive empirical evaluations on three federated datasets clearly demon-
strate that APFL provides affordable and personalized architectures for individual
clients, costing fewer communication bytes and achieving higher accuracy com-
pared with manually defined architectures under the same resource budgets.

1 Introduction

Server

1. Exceed resource budgets!
2. Not adapted to local data!

Figure 1: Don’t apply the same architecture for all
clients.

Recently, some research works have been
devoted to Federated Neural Architecture
Search (Federated NAS) [1–4]. They aim to
search neural architectures in the federated
setting where data are not independent and
identically distributed (non-IID) among mul-
tiple clients (such as mobile phones or online
systems of different organizations with con-
strained data access) and cannot be uploaded
to the central server due to privacy concern.
Federated NAS finds model architectures au-
tomatically, saving much time and human ef-
fort compared with the hand-design manner.
Thus, it is attracting increasing attention.

Existing Federated NAS methods strive to search the optimal global model architecture in a de-
centralized way based on popular NAS algorithms [5–7], which is then applied to all the clients

1st NeurIPS Workshop on New Frontiers in Federated Learning (NFFL 2021), Virtual Meeting.



after being fully trained. Though effective, two major issues arise when deploying the resultant
model architecture on clients. As shown in Figure 1, firstly, each client may have different hardware
configurations, posing resource constraints (such as latency, energy and memory footprint) for the
architecture to run properly, thus the global architecture maybe not affordable. Secondly, as sug-
gested by [8–10], the architecture that achieves the best performance on particular data distribution
may not generalize well to another. In federated learning, the data distributed on clients are non-IID,
thus it’s implausible that a single architecture optimized globally performs best for all the clients.

To address these issues, this work makes the first effort to explore the problem of discovering per-
sonalized architectures that are tailored to specific resource budgets and heterogeneous data distri-
butions of a diverse set of clients in federated learning. This problem is challenging due to privacy
and regulatory reasons. Personal data cannot leave the client, thus the architecture search process
should take place locally. Most NAS methods are time-consuming and computationally expen-
sive [11, 12]. Though many approaches have accelerated searching or reduce the required com-
putation overhead [5, 13, 14], the inherent drawback of the large search space still remains. So they
are not suitable for deployment on resource-constrained edge devices. Further, to boost the local task
performance while affording the budget, optimal accuracy-efficiency trade-offs should be achieved.

To battle these problems, we propose a new federated NAS algorithm called Federated Chan-
nel Search (FedCS). The main idea is to maintain a powerful global architecture (called “Super-
network”) with strong generalization ability on the server, being tailorable for different clients and
then pruning it at the channel-level to obtain efficient and customized local model architectures.
Note that local pruning requires no further back-propagation on the local data and can be executed
on the fly. Compared with previous federated NAS methods, FedCS is more suitable for the resource-
constrained federated setting. It largely compresses the scale of search space by only searching for
channel configurations. Further, it is computationally-cheap since the searching cost mainly lies in
the training process of super-network which could be largely shrunk.

Typically, architectures searched by federated NAS approaches are trained from scratch using Fe-
dAvg [15] to boost their performance. However, the parameter aggregation scheme of FedAvg re-
quires each client to share the same architecture and doesn’t fit for the setting where each client has
diverse architectures. Thus we propose a novel Federated Partial Aggregation (FedPA) algorithm to
achieve continuous improvements on the performance of sub-networks. In FedPA, all the clients col-
laboratively update the weights of the super-network maintained on the server in a periodic manner,
then inherit the corresponding part of weights from the super-network. Since only partial weights
of the super-network are transmitted, in our experiments, FedPA saves much communication cost to
attain the same accuracy with the state-of-the-art FedAvg. Note that FedPA is not a supplementary
algorithm for FedCS, but can be applicable to the general setting where all clients own different
architectures sampled from the same search space.

As shown in Figure 2, the primary contribution of this work is a novel Architecture Personalization
Federated Learning (APFL) framework which includes the above two sequential steps. It addresses a
federated learning problem with great practical significance but not much prior literature: each client
has its own resource constraint and heterogeneous data and needs to be served with personalized
model architecture. APFL advances the progress of federated learning in two aspects. 1) First, it
provides a computationally-efficient FedCS algorithm which conducts neural architecture search
for channel number on mobile devices while preserves user privacy. Empirical results show that,
with FedCS, we are able to acquire personalized architectures which make good trade-offs between
accuracy and resource-efficiency. Moreover, personalized architectures searched by FedCS cost less
communication cost compared with human-designed architectures. 2) Second, APFL gives FedPA,
an off-the-shelf solution to the federated optimization problem under the setting where clients have
diverse architectures. Extensive experiments show that FedPA achieves much more accuracy gains
compared with FedAvg.

2 Related Work

This work is related to Personalization in Federated Learning, Neural Architecture Search, and Fed-
erated Neural Architecture Search. Please refer to the Appendix for more discussions.

2



Clients

Search Space/Super-Network

Server

𝐷1 𝐷𝑁𝐷3𝐷2

Personalized Architectures/Sub-Networks

1. Super-Network
Warm-up

2. Local Channel 
Pruning

4. Return Weights
of Sub-Networks

6. Distribute 
Filtered 
Weights

5. Partial 
Aggregation

Federated Channel Search Federated Partial Aggregation

3. Sub-Network
Local Training

Figure 2: An overview of APFL framework. It divides the federated learning process into two subsequent
phases: 1) Federated Channel Search (marked with black arrow), which searches hardware-friendly architec-
tures for the clients equipped with heterogeneous resources. 2) Federated Partial Aggregation (marked with red
arrow), which aims to make the searched architectures ready for real-time inference.

3 Problem Setup

We consider image classification task on a central server and K clients. Each client uk stores a
local private dataset Dk, with nk data samples. Each local data sample in Dk is drawn from a
local distribution Pk different from the ones of other clients. Their formed global training data
D =

⋃
kD

k with n =
∑

k nk samples are non-IID.

More specifically, we address a resource-constrained federated learning setting. That is, each client
uk has its own computation resource budget Bk. Two resource constraints are considered, i.e.,
FLOPs and the model size (the number of parameters) which the client can afford.

Formally, we aim to search for the optimal and personalized architecture parameter θ∗k, along with
the optimized model weight parameter w∗k for each client uk, whose resource cost C(θk) does not
exceed the local budget Bk. The objective can be defined as

min
W,Θ

F (W,Θ) ,
K∑

k=1

pkL(wk, θk;Dk)

s.t. C(θk) ≤ Bk, ∀k = 1, 2, ...,K,

(1)

W = [w1, w2, ..., wK ] denote their corresponding model weight parameters, and pk = nk/n is the
client-wise weighting factor when participating in aggregation. The function L is the local objective
function which measures the classification loss over the local dataset Dk = {z1, . . . , znk

}:

L(wk, θk;Dk) ,
1

nk

nk∑
i=1

`(wk, θk; zi), (2)

where `(·, ·; ·) is the cross entropy loss function.

Search Space. Our adopted search space is MobileNet [16–18], which has been proven to be stable
and efficient for mobile setting. To further shrink the search space into an acceptable range for
resource-constrained federated learning, we set the number of the channels as the only changeable
option of the network. Thus, θ is a vector containing the channel configuration of a network. Note
that another popular search space DARTS [5] used in [1, 2] is less hardware-friendly and has lower
scalability to architecture personalization, thus we don’t adopt it.

3



4 Architecture Personalization Federated Learning (APFL)

Algorithm 1: Federated Channel Search. T is
the number of communication rounds; E stands
for the number of local training epochs; w(t)

m rep-
resents the network weights at client um in round
t; Bk stands for the computation budget at client
uk; Ck is the computation cost of the current net-
work adopted at client uk, R ∈ (0, 1) is the shrink
ratio of channels.

1 # Super-Network Warm-up:
2 for t = 0 to T − 1 do
3 Server samples a set of M high

capacity clients, indexed by I(t), and
broadcasts w(t) to the sampled
clients;

4 for each client um with m ∈ I(t) do
5 w

(t+1)
m ← TrainingUSNet(w(t))

6 Send w(t+1)
m back to the server;

7 end
8 Server aggregates the received

gradients as:
9 w(t+1) ←

∑
m∈I(t)

nm

n(t)w
(t+1)
m

10 end
11 # Local Channel Pruning:
12 Server broadcasts current super-network

weights w to all the clients;
13 for each client uk do
14 while C(θk) > Bk do
15 for number of channels θjk for

each layer j do
16 θjk ← dθ

j
k(1−R)e

17 Aj ← AccDrop(θk)

18 θjk ← bθ
j
k/(1−R)c

19 end
20 j∗ ← arg min

j
Aj ,

θj
∗

k ← dθ
j∗

k (1−R)e
21 end
22 end

Challenges. The above optimization prob-
lem is difficult since both the optimal val-
ues of W and Θ should be obtained. In this
work, we solve it by fixing one and optimiz-
ing the other. The problem can be disassem-
bled into two stages: 1) Architecture search,
which finds optimal architectures Θ. 2) Per-
sonlized Architecture Training, which keeps
Θ unchanged and determines the correspond-
ing W . The first sub-question is tricky due
to privacy concerns in federated learning. All
computation must be completed on resource
constrained edge devices, imposing high re-
quirements on the efficiency of the search
strategy and the scale of the search space. The
second sub-question is also arduous because
the heterogeneity of model architectures of
clients makes the classic federated optimiza-
tion algorithm FedAvg fail. More specifically,
The underlying assumption of FedAvg is that
all clients share the same architecture, while
this is not met in our problem.

General Framework. As shown in figure 2,
APFL consists of two fundamental compo-
nents: Federated Channel Search (FedCS)
and Federated Partial Aggregation (FedPA),
which are responsible for Architecture Search
and Personlized Architecture Training re-
spectively.

FedCS aims to search for the optimal chan-
nel configurations which satisfy the resource
budgets of individual clients. The general
idea is inspired by network pruning [19–22],
to reduce a heavy network to a lightweight
one by removing redundant weights or neu-
rons. Network pruning is a natural choice
for architecture personalization in federated
learning, because the same trained super-
network can be flexibly applied for local
pruning on a large amount of clients. Com-
mon pruning criteria includes the magnitudes
of weights [23], scaling parameters of batch
normalization [19], etc. However, these criteria are not directly applicable to APFL. The main reason
is that the over-parameterized super-network should be trained in a federated way, thus the numer-
ical values of the weights only reflect the corresponding importance on the global training data D,
rather than the importance on the personalized local data Dk. To make the pruned architecture more
customized, we propose to ground the pruning criteria on the local task performance. Specifically,
we use the instant inference accuracies of the sub-networks contained in the super-network to deter-
mine whether a channel should be pruned. Note that we prune at the level of the channel rather than
the weight, avoiding unstructured sparse matrix operations which require special hardware support
to be effective [17]. To conclude, in FedCS, a global tailorable architecture is firstly trained in a
distributed way, then it is pruned through client-wise additional learning on the local data to fit the
local resource constraints. This approach can fully exploit the generalization properties of the global
model as well as the learned customized information from the local distribution.

FedPA aims to solve the federated optimization problem where the client’s architecture are incon-
gruous sub-networks cut out from the super-network. It retains the benefit of collaborative training

4



by enabling the local customized models to learn from each other. The intuition is to only update the
corresponding part of weights in the super-network when a sub-network makes contributions to it.

4.1 Federated Channel Search (FedCS)

FedCS starts with training a sizable global super-network with FedAvg. However, plain training does
not optimize the sub-networks contained in the global model. Therefore, the super-network is not
a good estimator to rank the relative accuracies of the sub-networks contained in it. So the sub-
networks cannot be directly drawn from the super-networks to acquire its instant inference accuracy
which will be served as the criteria for local pruning. In view of the above considerations, we resort to
slimmable networks [24, 25, 8] which can be executed at arbitrary widths as the global architecture.
In slimmable networks, US-Net [25] is particularly suitable because it adopts the sandwich rule
and inplace distillation so that sub-networks with different channel configurations can be optimized
simultaneously.

Super-Network Warm-up. Different from most network pruning methods, FedCS does not fully
train the super-network to achieve its utmost performance. The reason is that we only care about the
relative accuracy of the sub-networks, so roughly training for 30% of the full rounds will be enough,
according to our experiments. This practice benefits federated learning by saving much communi-
cation and computation cost. As shown in Algorithm. 1, FedCS first initializes the weight of super-
network w0 randomly. In the t-th communication round, the server selects a random subset from the
clients which are capable of running the super-network properly, indexed by I(t) ⊆ {1, . . . ,K}, and
distributes the current w(t) to them. Then each participating client um performs local training based
on the received parameters w(t), and sends the updated parameters w(t)

m back to the central server.
Specifically, the typical training paradigm of US-Net is adopted in the local learning procedure, de-
tails are covered in the Appendix. After receiving the architecture parameters and network weights
from all the participating clients, the central server then takes a weighted average of them to update
the global model. The weighting factor is nm

n(t) , where nm is the number of local samples of the client
um, and n(t) =

∑
m∈I(t) nm is the total number of data samples used in this communication round.

Local Channel Pruning. Once the super-network is obtained, unnecessary channels are pruned
from it layer-wisely. We adopt greedy pruning strategy [8, 26] to achieve an inherent trade-off be-
tween the accuracy and the resource-efficiency of the personalized architecture. Local pruning re-
quires no further training of the super-network. The sub-networks can be directly sampled from the
super-network to acquire the instant inference accuracy as the pruning criterion. Algorithm. 1 shows
the detailed local channel pruning procedure. The central server first broadcasts the weights w of
the super-network obtained from the warm-up stage to all clients. After receiving w from the server,
each client uk fine-tunes the channel number of the received architecture based on its local resource
budgetBk. Concretely, we predefine a shrink ratioR ∈ (0, 1). In each iteration, each layer is shrunk
by R tentatively, then the accuracy of the pruned network is computed on the local training dataset.
After finishing all the layers, the layer j with the minimum accuracy drop Aj will be truly shrunk.
Then the computation cost C(θk) of the pruned network will be checked. If it is lower than the local
resource budget Bk, the pruning process would be terminated.

4.2 Federated Partial Aggregation (FedPA)

After attaining personalized architectures by FedCS, one can choose to fully train them on the local
datasets. However, to make the best use of the generalization capacity of the super-network and also
the global information encoded in it, the local model can inherit the corresponding part of parameters
from the super-network. This is inspired by the lottery ticket hypothesis [27] that sub-networks can
benefit from the initial weights of the original super-network. However, as suggested by [28, 29],
simply training on the local data restrains individual clients from learning beneficial knowledge from
each other and sacrifices the core advantage of federated learning: win-win cooperations among
clients. After an extensive survey on federated optimization algorithms, we find that most off-the-
shelf methods, such as FedAvg[15], FedMA [30], FedProx [31], are grounded on the assumption
that all clients share the same architecture, thus not fit for our problem. In view of this, we propose
a novel federated partial aggregation algorithm FedPA which solves federated optimization problem
with heterogeneous edge architectures. Full details of FedPA can be found in the Appendix.

5



A crucial trick of FedPA is always to keep batch normalization [32] statistics locally, for three rea-
sons. First, running mean and variance of feature representations are privacy-sensitive, thus should
never leave the clients. Second, retaining batch normalization statistics locally is naturally suited to
eschew aggregation disorder brought by heterogeneous channel configuration. Additionally, for non-
IID data, the local running means and variances may vary across clients considerably, thus average
them to accumulate global BN statistics may not help advance local task performance.

5 Experiment
5.1 Experiment Setup

We consider image classification task and adopt three datasets from the popular FedML bench-
mark [33], including CIFAR-10 [34], CIFAR-100 [34] and CINIC-10 [35]. Note that CINIC-10
is constructed from ImageNet [36] and CIFAR-10, whose samples are very similar but not drawn
from identical distributions. Therefore, it naturally introduces distribution shifts which is suited to
the heterogeneous nature of federated learning. We are interested in two data partition strategies :
IID partition and NIID partition. The detailed partition strategy, statistics and visualizations of the
datasets are summarized in the Appendix. For the local resource constraintsBk, we divide the clients
into 3 groups with 3 possible resource configurations: high budget, medium budget and low budget.
To check the performance of APFL under the scenarios with different overall computation capaci-
ties, we consider two settings: 1) HIGH CAPACITY, where 50% of clients are equipped with high
computation budgets, 30% and 20% of clients have medium and low computation budgets. 2) LOW
CAPACITY, where only 20% of clients are equipped with high computation budgets, 30% and 50%
of clients have medium and low budgets. Other implementation details are covered in the Appendix.

5.2 Accuracy Improvement of APFL

0 50 100 150
Shrink Ratio(%)

0

5

10

15

20

25

30

33

La
ye

r I
nd

ex

(a) CIFAR-10-IID.
Client 1
Client 2

0 50 100 150
Shrink Ratio(%)

0

5

10

15

20

25

30

33

(b) CIFAR-10-NIID.
Client 1
Client 2

Figure 3: Comparing architectures searched on
different clients.

The classic federated optimization algorithm
FedAvg requires all clients to share the same
architecture. To make it comparable in our
setting, we set the global architecture of Fe-
dAvg as MobileNetV2-0.5x which is accept-
able to all the clients. However, this base-
line is weak considering the overall compu-
tation capacity is still low. So we propose a
stronger baseline that allows each client to
own heterogeneous local architectures. We
term it as federated learning with uniform
channels (FedUniform). Concretely, FedUni-
form modifies the global width multiplier of
the super-network adaptively for each client
till its resource constraints are fulfilled. Ac-
cording to [16, 17], It’s effective for trad-
ing off between resource efficiency and accu-
racy. In FedUniform, the local architectures
adopted by clients with high, medium and,
low resource budgets are MobileNetV2 with
1x, 0.75x and, 0.5x width multipliers respec-
tively. The local architectures obtained by
FedCS and FedUniform are both trained with
FedPA from scratch. Note that for a fair com-
parison, sub-networks of FedCS didn’t inherit weights from the super-network which was trained
in the warm-up stage. However, we also find that using the parameters of super-networks for ini-
tialization further improves the performance of FedCS. After training, the local testing tasks can be
performed either by downloading the global super-network from the server for inference or directly
running with the local architectures. We report accuracies of both evaluation methods and abbreviate
them as ”Glo” and ”Loc”.

We summarize all the results in Table 1. For all the datasets, it can be observed that FedCS achieves
accuracy improvements over FedAvg, with the accuracy gain up to 15.17% on CINIC-10. We then

6



Table 1: Accuracy@1 (%) on CIFAR-10, CIFAR-100 and CINIC-10.

Methods
CIFAR-10 CIFAR-100 CINIC-10

IID NIID IID NIID IID NIID
Glo. Loc. Glo. Loc. Glo. Loc. Glo. Loc. Glo. Loc. Glo. Loc.

HIGH
CAPACITY

FedAvg 92.10 89.49 66.36 64.6 77.63 60.21
FedUniform 92.58 92.55 92.47 92.52 68.1 67.80 65.83 65.46 79.21 79.19 71.11 73.57
FedCS (Ours) 92.74 92.75 93.08 93.29 68.39 68.46 66.01 65.60 79.33 79.31 74.51 75.38

LOW
CAPACITY

FedAvg 92.10 89.49 66.36 64.6 77.63 60.21
FedUniform 91.66 91.68 92.38 92.45 67.61 67.51 65.69 65.39 78.76 78.78 71.04 72.22
FedCS (Ours) 92.63 92.64 92.82 93.05 67.83 68.15 65.86 65.44 79.01 79.02 73.04 74.42

compare FedCS with FedUniform and find that FedCS performs consistently better than FedUniform.
We also notice that when increasing the proportion of clients with lower resource budgets (from
HIGH CAPACITY to LOW CAPACITY), the accuracies of FedCS and FedUniform both decrease,
but FedCS still performs better than FedUniform. It well demonstrates that the architectures searched
by FedCS are more customized to the local data distribution. Another surprising discovery is that the
performance of applying personalized architectures for local inference is not necessarily worse than
that of applying the full super-network. On CINIC-10, it even provides a 2.46% accuracy gain, which
further validates the advantage of architecture personalization. To conclude, all results confirm that
FedCS is able to find personalized architectures which not only meet the local resource constraints
but also boost the performance of local tasks.

5.3 Visualization of Personalized Architectures

To analyze the characteristics of the personalized architectures searched by APFL, we now provide
additional visualization results. First, we compare the local architectures of the clients who belong
to the same resource group. On the IID and NIID versions of CIFAR-10, we plot the shrink ratios
of the pruned architectures (compared to the original MobileNetV2). As shown in Figure 3, the
architectures searched on the NIID version are visually more heterogeneous. We also compute the L2
distance between the two architecture parameters θ and find that the distance between architectures
searched on the IID version is indeed smaller. This suggests that the personalized architectures
obtained by APFL are effectively adapted to local distributions.

5.4 System Overhead

0 20 40 60

FedCS

FedUniform

49.16

64.29

CIFAR-10

0 20 40 60

51.39

61.15

CIFAR-100

0 5 10 15

10.51

13.25

CINIC-10

Figure 4: Communication Cost (GBytes).

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
Number of Parameters (M)

40

60

80

FL
OP

s (
M

)

FedUniform
FedCS

Figure 5: FLOPs and number of parameters.

We now present another benefit brought by
FedCS. As shown in Figure 5, we compare
the average FLOPs and number of parame-
ters of local architectures searched by FedCS
with that of FedUniform. It can be seen that
with nearly the same FLOPs, FedCS pro-
vides more lightweight architectures which
consume less local storage space than Fe-
dUniform. As shown Figure 4, training archi-
tectures searched by FedCS obviously costs
fewer communication bytes to achieve the
same accuracy as that of FedUniform. This is
particularly inspiring, as communication cost
is the main bottleneck of federated learning.

6 Conclusion

In this paper, we initialize the concept of architecture personalization and propose a novel federated
architecture learning framework named APFL which is able to discover resource-efficient person-
alized model architectures for individual clients. Extensive empirical results well demonstrate the
effectiveness and high efficiency of APFL. As a starting point, we hope the proposed APFL frame-
work could contribute to simulating research on architecture personalization in federated learning.
We leave to future work many open problems, such as convergence analysis of FedPA and more
effective federated partial aggregation algorithms.

7



References
[1] He, C., M. Annavaram, S. Avestimehr. Fednas: Federated deep learning via neural architecture

search. 2020.

[2] Singh, I., H. Zhou, K. Yang, et al. Differentially-private federated neural architecture search.
arXiv preprint arXiv:2006.10559, 2020.

[3] Zhu, H., Y. Jin. Real-time federated evolutionary neural architecture search. arXiv preprint
arXiv:2003.02793, 2020.

[4] Xu, M., Y. Zhao, K. Bian, et al. Neural architecture search over decentralized data. arXiv
preprint arXiv:2002.06352, 2020.

[5] Liu, H., K. Simonyan, Y. Yang. Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018.

[6] He, C., H. Ye, L. Shen, et al. Milenas: Efficient neural architecture search via mixed-level
reformulation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11993–12002. 2020.

[7] Yang, T.-J., A. Howard, B. Chen, et al. Netadapt: Platform-aware neural network adaptation for
mobile applications. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 285–300. 2018.

[8] Yu, J., T. Huang. Autoslim: Towards one-shot architecture search for channel numbers. arXiv
preprint arXiv:1903.11728, 2019.

[9] Chin, T.-W., R. Ding, C. Zhang, et al. Towards efficient model compression via learned global
ranking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 1518–1528. 2020.

[10] Luo, M., F. Chen, P. Cheng, et al. Metaselector: meta-learning for recommendation with user-
level adaptive model selection. In Proceedings of The Web Conference 2020, pages 2507–2513.
2020.

[11] Zoph, B., Q. V. Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

[12] Real, E., A. Aggarwal, Y. Huang, et al. Regularized evolution for image classifier architecture
search. In Proceedings of the aaai conference on artificial intelligence, vol. 33, pages 4780–
4789. 2019.

[13] Xu, Y., L. Xie, X. Zhang, et al. Pc-darts: Partial channel connections for memory-efficient
architecture search. arXiv preprint arXiv:1907.05737, 2019.

[14] Dong, X., Y. Yang. Searching for a robust neural architecture in four gpu hours. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1761–1770.
2019.

[15] McMahan, B., E. Moore, D. Ramage, et al. Communication-Efficient Learning of Deep Net-
works from Decentralized Data. In AISTATS, pages 1273–1282. 2017.

[16] Howard, A. G., M. Zhu, B. Chen, et al. Mobilenets: Efficient convolutional neural networks
for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[17] Sandler, M., A. Howard, M. Zhu, et al. Mobilenetv2: Inverted residuals and linear bottlenecks.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
4510–4520. 2018.

[18] Howard, A., M. Sandler, G. Chu, et al. Searching for mobilenetv3. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 1314–1324. 2019.

[19] Liu, Z., J. Li, Z. Shen, et al. Learning efficient convolutional networks through network slim-
ming. In Proceedings of the IEEE International Conference on Computer Vision, pages 2736–
2744. 2017.

8



[20] He, Y., X. Zhang, J. Sun. Channel pruning for accelerating very deep neural networks. In
Proceedings of the IEEE International Conference on Computer Vision, pages 1389–1397.
2017.

[21] Huang, Q., K. Zhou, S. You, et al. Learning to prune filters in convolutional neural networks.
In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 709–718.
IEEE, 2018.

[22] Lee, N., T. Ajanthan, P. H. Torr. Snip: Single-shot network pruning based on connection
sensitivity. arXiv preprint arXiv:1810.02340, 2018.

[23] Han, S., J. Pool, J. Tran, et al. Learning both weights and connections for efficient neural
networks. arXiv preprint arXiv:1506.02626, 2015.

[24] Yu, J., L. Yang, N. Xu, et al. Slimmable neural networks. arXiv preprint arXiv:1812.08928,
2018.

[25] Yu, J., T. S. Huang. Universally slimmable networks and improved training techniques. In
Proceedings of the IEEE International Conference on Computer Vision, pages 1803–1811.
2019.

[26] Ye, M., C. Gong, L. Nie, et al. Good subnetworks provably exist: Pruning via greedy forward
selection. In International Conference on Machine Learning, pages 10820–10830. PMLR,
2020.

[27] Frankle, J., M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks.
arXiv preprint arXiv:1803.03635, 2018.

[28] Liang, P. P., T. Liu, Z. Liu, et al. Think locally, act globally: Federated learning with local and
global representations. ArXiv, abs/2001.01523, 2019.

[29] Hanzely, F., P. Richtárik. Federated learning of a mixture of global and local models. arXiv
preprint arXiv:2002.05516, 2020.

[30] Wang, H., M. Yurochkin, Y. Sun, et al. Federated learning with matched averaging. In Inter-
national Conference on Learning Representations. 2020.

[31] Li, X., K. Huang, W. Yang, et al. On the convergence of fedavg on non-iid data. arXiv preprint
arXiv:1907.02189, 2019.

[32] Ioffe, S., C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pages 448–456.
PMLR, 2015.

[33] He, C., S. Li, J. So, et al. Fedml: A research library and benchmark for federated machine
learning. arXiv preprint arXiv:2007.13518, 2020.

[34] Krizhevsky, A., G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[35] Darlow, L. N., E. J. Crowley, A. Antoniou, et al. Cinic-10 is not imagenet or cifar-10. arXiv
preprint arXiv:1810.03505, 2018.

[36] Russakovsky, O., J. Deng, H. Su, et al. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[37] Fallah, A., A. Mokhtari, A. Ozdaglar. Personalized federated learning: A meta-learning ap-
proach. arXiv preprint arXiv:2002.07948, 2020.

[38] Chen, F., M. Luo, Z. Dong, et al. Federated meta-learning with fast convergence and efficient
communication. arXiv preprint arXiv:1802.07876, 2018.

[39] Jiang, Y., J. Konečnỳ, K. Rush, et al. Improving federated learning personalization via model
agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.

9



[40] Smith, V., C.-K. Chiang, M. Sanjabi, et al. Federated multi-task learning. In Advances in
Neural Information Processing Systems, pages 4424–4434. 2017.

[41] Khodak, M., M.-F. F. Balcan, A. S. Talwalkar. Adaptive gradient-based meta-learning methods.
In Advances in Neural Information Processing Systems, pages 5917–5928. 2019.

[42] Bui, D., K. Malik, J. Goetz, et al. Federated user representation learning. arXiv preprint
arXiv:1909.12535, 2019.

[43] Liang, P. P., T. Liu, L. Ziyin, et al. Think locally, act globally: Federated learning with local
and global representations. arXiv preprint arXiv:2001.01523, 2020.

[44] Cai, H., T. Chen, W. Zhang, et al. Efficient architecture search by network transformation.
arXiv preprint arXiv:1707.04873, 2017.

[45] Zoph, B., V. Vasudevan, J. Shlens, et al. Learning transferable architectures for scalable image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 8697–8710. 2018.

[46] Cai, H., L. Zhu, S. Han. Proxylessnas: Direct neural architecture search on target task and
hardware. arXiv preprint arXiv:1812.00332, 2018.

[47] Tan, M., B. Chen, R. Pang, et al. Mnasnet: Platform-aware neural architecture search for
mobile. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2820–2828. 2019.

[48] Wu, B., X. Dai, P. Zhang, et al. Fbnet: Hardware-aware efficient convnet design via differen-
tiable neural architecture search. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 10734–10742. 2019.

[49] Jin, X., J. Wang, J. Slocum, et al. Rc-darts: Resource constrained differentiable architecture
search. arXiv preprint arXiv:1912.12814, 2019.

[50] Cai, H., C. Gan, T. Wang, et al. Once-for-all: Train one network and specialize it for efficient
deployment. arXiv preprint arXiv:1908.09791, 2019.

[51] Guo, Z., X. Zhang, H. Mu, et al. Single path one-shot neural architecture search with uniform
sampling. arXiv preprint arXiv:1904.00420, 2019.

[52] Yurochkin, M., M. Agarwal, S. Ghosh, et al. Bayesian nonparametric federated learning of
neural networks. In International Conference on Machine Learning, pages 7252–7261. PMLR,
2019.

10


