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Abstract

Federated learning has evolved to improve a single global model under data het-
erogeneity (as a curse) or to develop multiple personalized models using data
heterogeneity (as a blessing). However, there has been little research considering
both directions simultaneously. In this paper, we first investigate the relationship
between them by analyzing Federated Averaging [31] at the client level and deter-
mine that a better federated global model performance does not constantly improve
personalization. To elucidate the cause of this personalization performance degra-
dation problem, we decompose the entire network into the body (i.e., extractor),
related to universality, and the head (i.e., classifier), related to personalization.
We then point out that this problem stems from training the head. Based on this
observation, we propose a novel federated learning algorithm, coined as FedBABU,
which updates only the body of the model during federated training (i.e., the head
is randomly initialized and never updated), and the head is fine-tuned for person-
alization during the evaluation process. Extensive experiments show consistent
performance improvements and an efficient personalization of FedBABU.

1 Introduction
Federated learning (FL) [31], a distributed learning framework with personalized data, has become
an attractive field of research. From the early days of this field, improving a single global model
across devices has been the main objective [48, 13, 28, 1], where the global model suffers from data
heterogeneity. Many researchers have recently focused on multiple personalized models by leveraging
data heterogeneity across devices as a blessing in disguise [4, 12, 47, 14, 37, 38]. Although many
studies have been conducted on each research line, there remains a lack of research on how to train a
good global model for personalization purposes [22, 23]. In this study, for personalized training, each
local client model starts from a global model that learns information from all clients and leverages
the global model to fit its own data distribution.

In [23], personalization methods that adapt the global model through fine-tuning on each device
were analyzed. They observed that the effects of fine-tuning are encouraging and that training in
a central location increases the initial accuracy (of a single global model) while decreasing the
personalized accuracy (of on-device fine-tuned models). We focus on why opposite changes in the
two performances appear. This suggests that the factors for universality and personalization must be
dealt with separately, inspiring us to decouple the entire network into the body related to generality
and the head related to specialty, as in [24, 45, 44, 10] for advanced analysis. Note that popular
networks have one linear layer (e.g., MobileNet [21] and ResNet [20]), and the head is defined as this
linear layer and the body is defined as all the layers except the head. The body of the model is related
to representation learning, and the head of the model is related to linear decision boundary learning.
We shed light on the cause of the personalization performance degradation problem by decoupling
parameters, pointing out that such a problem stems from training the head.
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Figure 1: Difference in the local update and aggregation stages between FedAvg and FedBABU.
In the figure, the lines represent the decision boundaries defined by the head (i.e., the last linear
classifier) of the network. Different shapes indicate different classes. It is assumed that each client
has two classes. (a) FedAvg updates the entire network during local updates on each client, and then
the local networks are aggregated entirely. Therefore, the heads of all clients and the head of the
server are different. Whereas, (b) FedBABU only updates the body (i.e., all the layers except the
head) during local updates on each client, and then the local networks are aggregated body-partially.
Therefore, the heads of all clients and the head of the server are the same.

Inspired by the above observations, we propose an algorithm to learn a single global model that
can be efficiently personalized by simply changing the Federated Averaging (FedAvg) algorithm.
FedAvg consists of four stages: client sampling, broadcasting, local update, and aggregation. In the
client sampling stage, clients are sampled because the number of clients is so large that not all clients
can participate per round. In the broadcasting stage, the server sends a global model (i.e., an initial
random model at the first broadcast stage or an aggregated model afterward) to the participating
clients. In the local update stage, the broadcast model of each device is trained based on its own data
set. In the aggregation stage, locally updated models are sent to the server and are aggregated by
averaging. Among the four stages, we focus on the local update stage from both the universality and
personalization perspectives. Here, we only update the body of the model in the local update stage,
i.e., the head is never updated during federated training. From this, we propose FedBABU, Federated
Averaging with Body Aggregation and Body Update. Figure 1 describes the difference during the
local update and aggregation stages between FedAvg and FedBABU. Intuitively, our approach is a
type of representation learning based on the same fixed criteria across all clients. This simple change
improves the representation power of a single global model and enables the trained single global
model to be personalized more accurately and rapidly than FedAvg.
Our contributions are summarized as follows:

• We investigate the connection between a single global model and fine-tuned personalized
models by analyzing the FedAvg algorithm at the client level and show that training the
head using centralized data has a negative impact on personalization.

• We demonstrate that a fixed random classifier can have comparable performance as a learned
classifier under a centralized setting. From this observation, we suggest that sharing a
fixed random classifier across all clients can be more potent for matched aggregation than
averaging each learned classifier in federated settings.

• We propose a novel algorithm, FedBABU, that reduces the update and aggregation parts
from the entire model to the body of the model during federated training.

• We show that FedBABU is efficient, particularly under more significant data heterogeneity.
Furthermore, a single global model trained with the FedBABU algorithm can be personalized
rapidly (even with one fine-tuning epoch), and the personalization performance of FedBABU
overwhelms that of other existing personalization FL algorithms.

• We adapt the body update and body aggregation idea to the regularization-based feder-
ated learning algorithm (such as FedProx [28]). We show that regularization reduces the
personalization capabilities and that this problem is mitigated through BABU.
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2 Related Works

FL for a Single Global Model Canonical federated learning, FedAvg proposed by [31], aims to
learn a single global model that collects the benefits of affluent data without storing the raw data of
the clients in a central server, reducing the communication costs through local updates. However,
it is difficult to develop a globally optimal model for non-independent and identically distributed
(non-IID) data derived from various clients. To solve this problem, studies have been conducted
that make the data distribution of the clients IID-like or add regularization to the distance from the
global model during local updates. [48] suggested that all clients share a subset of public data, and
[13] augmented data for balancing the label distribution of clients. Recently, [28, 1] penalized local
models that have a large divergence from the global model, adding a regularization term to the local
optimization process and allowing the global model to converge more reliably. However, it should be
noted that a single global model trained using the above methods is not optimized for each client.

Personalized FL Personalized federated learning aims to learn personalized local models stylized to
each client. Although local models can be developed without federation, this method suffers from a
limited amount of data. Therefore, to maintain the benefits of the federation and personalized models,
many other methods have been applied to FL: clustering, multi-task learning, transfer learning,
and meta-learning. [3, 30] clustered similar clients to match the data distribution within a cluster
and learned separate models for each cluster without inter-cluster federation. Similar to clustering,
multi-task learning aims to learn models for related clients simultaneously. Note that clustering
ties related clients into a single cluster, whereas multi-task learning does not. The generalization of
each model can be improved by sharing representations between the related clients. [38, 12] showed
that multi-task learning is an appropriate learning scheme for personalized FL. Transfer learning
is also a recommended learning scheme because it aims to deliver knowledge among clients. In
addition, [43, 7] utilized transfer learning to enhance local models by transferring knowledge between
related clients. Unlike the aforementioned methods that develop local models during training,
[4, 14] attempted to develop a good initialized shared global model using bi-level optimization
through a Model-Agnostic Meta-Learning (MAML) approach [15]. A well-initialized model can be
personalized through updates on each client (such as inner updates in MAML). [23] argued that the
FedAvg algorithm could be interpreted as a meta-learning algorithm, and a personalized local model
with high accuracy can be obtained through fine-tuning from a global model learned using FedAvg.
In addition, various technologies and algorithms for personalized FL are presented, and it will be
helpful to read [40, 25] for more details.

Decoupling the Body (Extractor) and the Head (Classifier) for Personalized FL The training
scheme through decoupling the entire network into the body and the head has been used in various
fields, including long-tail recognition [24, 45], noisy label learning [46], and meta-learning [32, 34]1.
For personalized FL, there have been attempts to use this decoupling approach. For a consistent
explanation, we describe each algorithm from the perspective of local update and aggregation parts.
FedPer [2] learns the entire network jointly during local updates and aggregates the bottom layers
only. When the bottom layers are matched with the body, the body is shared on all clients and the
head is personalized to each client. LG-FedAvg [29] learns the entire network jointly during local
updates and aggregates the top layers only based on the pre-trained global network via FedAvg.
When the top layers are matched with the head, the body is personalized to each client and the head
is shared on all clients. FedRep [9] learns the entire network sequentially during local updates and
aggregates the body only. In the local update stage, each client first learns a classifier only with
the aggregated representation, and then learns an extractor only with its own classifier with a single
epoch. Unlike the above decoupling methods, we propose a FedBABU algorithm that learns only the
body with a randomly initialized classifier during local updates and aggregates only the body. It is
thought that fixing a classifier during the entire federated training provides the same guidelines on
learning representations across all clients. Personalized local models are then obtained by fine-tuning
the head.

3 Preliminaries

FL training procedure We summarize the training procedure of FL following the aforementioned
four stages with formal notations. Let {1, · · · , N} be the set of all clients. Then, the participating

1Although there are more studies related to decoupling parameters [35, 26, 16, 8], we focus on decoupling
the entire network into the body and head.
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clients in the communication round k with client fraction ratio f is Ck = {Ck
i }
⌊Nf⌋
i=1 . By broadcasting,

the local parameters of the participating clients {θki (0)}
⌊Nf⌋
i=1 are initialized by the global parameter

θk−1G , that is, θki (0)← θk−1G for all i ∈ [1, ⌊Nf⌋] and k ∈ [1,K]. Note that θ0G is randomly initialized
first. On its own device, each local model is updated using a locally kept data set. After local epochs
τ , the locally updated models become {θki (τIki )}

⌊Nf⌋
i=1 , where Iki is the number of iterations of one

epoch on client Ck
i (i.e., ⌈

n
Ck
i

B ⌉), nCk
i

is the number of data samples for client Ck
i , and B is the batch

size. Therefore, τIki is the total number of updates. Note that our research deals with a balanced
environment in which all clients have the same size data set (i.e., Iki is a constant for all k and i).

Finally, the global parameter θkG is aggregated by
∑⌊Nf⌋

i=1

n
Ck
i

n θki (τI
k
i ), where n =

∑⌊Nf⌋
i=1 nCk

i
, at

the server. For our algorithm, the parameters θ are decoupled into the extractor parameters θext and
the classifier parameters θcls.

Experimental setup We mainly use MobileNet on CIFAR100.2 We set the number of clients to
100, and then each client has 500 training data and 100 test data. The classes in the training and test
data sets are the same. For the heterogeneous distribution of client data, we refer to the experimental
setting in [31]. We sort the data by label and divide the data into the same-sized shards. Because
there is no overlapping data between shards, the size of a shard is defined by |D|

N×s , where |D| is the
data set size, N is the total number of clients, and s is the number of shards per user. We control FL
environments with three hyperparameters: client fraction ratio f , local epochs τ , and shards per user
s. f is the ratio of participating clients in the total number of clients in every round, and a small f is
natural in the FL settings because the total number of clients is numerous. Local epochs τ are equal
to the interval between two consecutive communication rounds. To fix the number of total updates
for the consistency in all experiments, we fix the product of communication rounds and local epochs
to 320 (e.g., if local epochs are 4, then the total number of communication rounds is 80). τ is closely
related to the trade-off between accuracy and communication costs. A small τ provides an accurate
federation but requires considerable communication costs. s is related to the maximum number of
classes each user can have; hence, as s decreases, the degree of data heterogeneity increases.

Evaluation We calculate the initial accuracy and personalized accuracy of FedAvg and FedBABU
following the federated personalization evaluation procedure proposed in [42] to analyze the algo-
rithms at the client level: (1) the learned global model is broadcast to all clients, and is then evaluated
on the test data set of each client Dts

i (referred to as the initial accuracy), (2) the learned global
model is personalized using the training data set of each client Dtr

i by fine-tuning with the fine-tuning
epochs of τf , and the personalized models are then evaluated on the test data set of each client
Dts

i (referred to as the personalized accuracy). In addition, we calculate the personalized accuracy
of other personalized FL algorithms (such as FedPer, LG-FedAvg, and FedRep). The algorithm
2 in Appendix A describes the evaluation procedure. The values (X±Y) in all tables indicate the
mean±standard deviation of the accuracies across all clients. Here, reducing the variance over the
clients could be an interesting topic, but is beyond the scope of this study.

4 Personalization of a Single Global Model
Table 1: Initial and personalized accuracy of FedAvg on CIFAR100 under various FL settings
with 100 clients. MobileNet is used. The initial and personalized accuracy indicate the evaluated
performance without fine-tuning and after five fine-tuning epochs on each client, respectively.

FL settings s=100 (heterogeneity ↓) s=50 s=10 (heterogeneity ↑)
f τ Initial Personalized Initial Personalized Initial Personalized

1.0
1 46.93±5.47 51.93±5.19 45.68±5.50 57.84±5.08 37.27±6.97 77.46±5.78
4 37.44±4.98 42.66±5.09 36.05±4.04 47.17±4.26 24.17±5.50 70.41±6.83

10 29.58±4.87 34.62±4.97 29.57±4.29 40.59±5.23 17.85±7.38 63.51±7.38

0.1
1 39.07±5.22 43.92±5.55 38.20±5.73 49.55±5.36 29.12±7.11 71.24±7.82
4 35.39±4.58 39.67±5.21 33.49±4.72 43.63±4.77 21.14±6.86 67.14±6.72

10 28.18±4.83 33.13±5.22 27.34±4.96 38.09±5.17 14.40±5.64 62.67±6.52

2We also use 4convNet on CIFAR10 and ResNet on CIFAR100. The details of the architectures used are
presented in Appendix A. The results of 4convNet and ResNet are presented in Appendix E and Appendix I,
respectively.
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Table 2: Initial and personalized accuracy of FedAvg on CIFAR100 under a realistic FL setting
(N=100, f=0.1, τ=10) according to p, which is the percentage of all client data that the server also
has. Here, the entire network (F) or body (B) is updated on the server using the available data.

s=100 (heterogeneity ↓) s=50 s=10 (heterogeneity ↑)
p Initial Personalized Initial Personalized Initial Personalized

0.00 28.18±4.83 33.13±5.22 27.34±4.96 38.09±5.17 14.40±5.64 62.67±6.52
0.05 (F) 29.23±5.03 32.59±5.24 27.13±4.34 34.34±4.78 18.22±5.64 54.68±6.77
0.10 (F) 30.59±4.93 33.34±5.30 29.62±4.27 35.50±4.84 19.24±5.15 49.62±7.48
0.05 (B) 28.50±4.93 33.03±5.36 27.96±4.86 39.10±5.55 14.78±5.59 60.19±6.46
0.10 (B) 32.90±4.77 36.82±4.66 32.81±4.97 40.80±5.62 18.35±6.75 60.94±7.30

We first investigate personalization of a single global model using the FedAvg algorithm, following
[42, 23], to connect a single global model to multiple personalized models. We evaluate both the
initial accuracy and personalized accuracy, assuming that the test data sets are not gathered in the
server but scattered on the clients. Table 1 describes the accuracy of FedAvg on CIFAR100 according
to different FL settings (f , τ , and s) with 100 clients. The initial and personalized accuracy indicate
the evaluated performance without fine-tuning and with five fine-tuning epochs for each client,
respectively. As previous studies have shown, the more realistic the setting is (i.e., a smaller f , larger
τ , and smaller s), the lower the initial accuracy. Moreover, the tendency of the personalized models
to converge higher than the global model observed in [23] is the same. More interestingly, it is shown
that the gap between the initial accuracy and the personalized accuracy increases significantly as the
data become more heterogeneous. It is thought that a small s makes local tasks to be easy because
the label distribution owned by each client is limited and the number of samples per class increases.

In addition, we conduct an intriguing experiment in which the initial accuracy increases but the
personalized accuracy decreases, maintaining the FL training procedures. In [23], the authors showed
that centralized trained models are more difficult to personalize. Similarly, we design an experiment
where the federated trained models are more difficult to personalize. We assume that the server has
a small portion of p of the non-privacy data of the clients3 such that the non-privacy data can be
used in the server to mitigate the degradation derived from data heterogeneity. We update the global
model using the non-privacy data after every aggregation with only one epoch. Table 2 describes the
result of this experiment. We update the entire network (F in Table 2) on the server. As p increases,
the initial accuracy increases, as expected. However, the personalized accuracy decreases under
significant data heterogeneity (s=10). This result implies that boosting a single global model can hurt
personalization, which may be considered more important than the initial performance. Therefore,
we agree that the development of an excellent global model should even consider the ability to be
adequately fine-tuned or personalized.

To investigate the cause of personalization performance degradation, we hypothesize that unnecessary
and confusing information for personalization is injected into a model, particularly a classifier, when
a global model is trained on the server. To capture this, we only update the body (B in Table 2) on the
server by zeroing the learning rate corresponding to a classifier. By narrowing the update parts, the
personalization degradation problem is remedied significantly without affecting the initial accuracy.
From this observation, we argue that training the head using harmonized data has a negative impact
on personalization.4

5 FedBABU: Federated Averaging with Body Aggregation and Body Update
In this section, we propose a novel algorithm that learns a better single global model to be personalized
efficiently. Inspired by prior studies on long-tailed recognition [45, 24], fine-tuning [10], and self-
supervised learning [18], as well as our data sharing experiment, we decouple the entire network
into the body (i.e., extractor) and the head (i.e., classifier). Extractors are trained for generalization,
and classifiers are then trained for specialization. We apply this idea to federated learning by never
training classifiers in the federated training phase (i.e., developing a single global model) and by
fine-tuning classifiers for personalization (in the evaluation process).

3Non-privacy data are sampled randomly in our experiment, which can violate the FL environments. However,
this experiment is conducted simply as motivation for our study.

4We also investigate personalization of centralized trained models such as [23], and the results are reported
in Appendix K. In the centralized training case, training the head also has a negative impact on personalization.
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5.1 Frozen Classifier in the Centralized Setting
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Figure 2: Test accuracy curves according to
the update part in the centralized setting.

Before proposing our algorithm, we empirically
demonstrate that a model with an initialized and fixed
classifier (body in Figure 2) has a performance com-
parable to a model that jointly learns an extractor and
a classifier (full in Figure 2). Figure 2 depicts the
test accuracy curve of MobileNet on CIFAR100 for
various training scenarios in the centralized setting.
The blue line represents the accuracy when all layers
are trained, the red line represents the accuracy when
only the body of the model is trained, and the green
line represents the accuracy when only the head of
the model is trained. It turns out that the fully trained
model and the fixed classifier have almost the same
performance, whereas the fixed extractor performs poorly. Thus, we claim that randomly initialized
fixed classifiers are acceptable, whereas randomly initialized fixed extractors are unacceptable.
Initialized classifiers are thought to serve as guidelines. This characteristic is derived from the
orthogonal initialization [36] on the head, which is explained in Appendix B.

5.2 FedBABU Algorithm
Based on the insights and results in Section 5.1, we propose a new FL algorithm, called FedBABU
(Federated Averaging with Body Aggregation and Body Update). Extractors are trained only, whereas
classifiers are never trained during federated training. Therefore, there is no need to aggregate the
head. Formally, the model parameters θ are decoupled into the extractor parameters θext and the
classifier parameters θcls. Note that θcls on any client is fixed with the classifier parameters of a
randomly initialized global parameters θ0G until a single global model converges. This is implemented
by zeroing the learning rate corresponding to the classifier. Intuitively, it is thought that the same
fixed classifier on all clients serves as the same criteria on learning representations across all clients
despite the passage of training time. The FedBABU algorithm is described in Appendix A. In this
section, we demonstrate the ability related to personalization of FedBABU (from Section 5.2.1 to
Section 5.2.3). We further show our algorithm’s applicability (Section 5.2.4).

5.2.1 Personalization of FedBABU
Table 3: Personalized accuracy of MobileNet
on CIFAR100 according to the fine-tuned part.
The fine-tuning epochs is 5, and f is 0.1.

Hyperparameter Update part for personalization
s τ Body Head Full

100
1 44.26±5.12 49.76±5.03 49.67±4.92
4 39.61±4.68 44.74±5.02 44.74±5.10

10 32.45±5.42 36.48±5.04 35.94±5.06

50
1 48.54±5.23 56.76±5.68 56.69±5.16
4 41.27±5.04 49.45±5.41 49.55±5.58

10 35.42±5.60 42.55±5.70 42.63±5.59

10
1 72.81±7.32 75.97±6.29 76.02±6.29
4 69.12±6.70 70.74±6.47 71.00±6.63

10 64.77±7.14 66.28±6.77 66.32±7.02

To investigate the dominant factor for personaliza-
tion, we compare the performance according to the
fine-tuned part. Table 3 describes the results of this
experiment. Global models are fine-tuned with five
epochs based on the training data set of each client.
It is shown that fine-tuning including the head (i.e.,
Head or Full in Table 3) is better for personalization
than body-partially fine-tuning (i.e., Body in Table 3).
For consistency of the evaluation, for FedBABU, we
fine-tune the entire model in the remainder of this pa-
per. Note that the computational costs can be reduced
by fine-tuning only the head in the case of FedBABU
without performance degradation; however, in the case of FedAvg, a performance gap appears (Ap-
pendix D). The personalization of FedBABU looks similar to the linear evaluation protocol, which
adds a linear layer to the well-trained extractor and makes it suitable for multiple tasks.

5.2.2 Personalization Performance Comparison
We compare FedBABU with existing methods from the perspective of personalization. Details of
evaluation procedure and implementations of each algorithm are presented in Appendix A. Table 4
describes the personalized accuracy of various algorithms. Interestingly, FedAvg overwhelms
other recent personalized FL algorithms on CIFAR100 in most cases.5 These results are similar to
recent trends in the field of meta-learning, where fine-tuning based on well-trained representations
overwhelms advanced few-shot classification algorithms for heterogeneous tasks [5, 6, 11, 41].
FedBABU (ours) further overwhelms FedAvg. It is believed that enhanced representation by
freezing the head during federated training improve performance, explained in Appendix O.

5The reason why FedAvg+Fine-tuning is effective itself needs to be discussed more.
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Table 4: Personalized accuracy comparison on CIFAR100 under various settings with 100 clients.
MobileNet is used. Bold indicates the best accuracy.

Hyperparameter Personalized accuracy

s f τ FedBABU (Ours) FedAvg [31] FedPer [2] LG-FedAvg [29] FedRep [9] Per-FedAvg [14] Local-only

100

1.0
1 55.79±4.57 51.93±5.19 51.95±5.30 53.01±5.26 18.29±3.59 47.09±7.35

20.6±3.15

4 44.49±4.91 42.66±5.09 40.87±5.05 43.09±4.74 15.32±3.79 39.07±7.59
10 33.20±4.54 34.62±4.97 32.91±4.97 34.64±5.03 13.45±3.26 30.22±6.59

0.1
1 49.67±4.92 43.92±5.55 45.17±4.70 40.91±5.50 23.84±3.92 48.10±7.42
4 44.74±5.10 39.67±5.21 39.30±4.92 37.87±4.99 16.01±3.48 33.70±7.04

10 35.94±5.06 33.13±5.22 32.08±4.97 30.08±5.34 11.11±3.13 25.82±5.83

50

1.0
1 61.09±4.91 57.84±5.08 57.16±5.26 58.44±5.53 24.75±5.02 43.75±7.94

28.02±4.01

4 51.56±5.04 47.17±4.26 48.89±5.40 47.78±4.72 21.55±4.36 37.59±7.87
10 42.09±5.12 40.59±5.23 39.90±5.54 40.32±4.70 19.92±4.50 28.75±6.40

0.1
1 56.69±5.16 49.55±5.36 51.63±5.27 42.64±5.55 32.88±5.09 43.96±7.40
4 49.55±5.58 43.63±4.77 46.31±5.63 38.54±4.71 21.13±3.96 28.67±6.98

10 42.63±5.59 38.09±5.17 39.81±4.88 30.79±6.12 15.15±4.01 21.64±6.16

10

1.0
1 79.17±6.51 77.46±5.78 74.71±6.35 77.49±5.60 61.28±8.27 36.59±8.98

61.52±7.22

4 74.60±6.69 70.41±6.83 65.61±7.13 69.97±6.42 50.59±7.94 18.31±10.57
10 66.64±6.84 63.51±7.38 59.71±7.35 61.50±7.28 42.13±7.53 11.54±8.87

0.1
1 76.02±6.29 71.24±7.82 69.36±6.77 51.75±9.32 60.13±7.72 31.21±11.66
4 71.00±6.63 67.14±6.72 62.62±7.63 35.80±10.55 45.91±7.68 14.34±9.51

10 66.32±7.02 62.67±6.52 59.50±7.33 25.04±12.02 34.30±7.84 9.17±6.95

5.2.3 Personalization Speed of FedAvg and FedBABU
Table 5: Performance according to the fine-tune epochs (FL setting: f=0.1, and τ=10).

s Algorithm Fine-tune epochs (τf )
0 (Initial) 1 2 3 4 5 10 15 20

50 FedAvg 27.34±4.96 29.17±5.01 32.39±4.77 34.97±5.13 36.78±5.13 38.09±5.17 40.56±5.43 41.20±5.51 40.86±5.13
FedBABU 27.91±5.27 35.20±5.58 40.60±5.47 42.12±5.61 42.74±5.60 42.63±5.59 41.94±5.68 41.19±5.52 40.61±5.28

10 FedAvg 14.40±5.64 27.43±6.46 48.63±7.30 58.08±6.11 61.27±6.15 62.67±6.52 63.91±6.49 64.56±6.45 64.89±6.53
FedBABU 18.50±7.82 63.29±7.55 66.05±6.93 66.10±6.54 66.40±7.24 66.32±7.02 66.07±7.57 66.24±7.67 66.32±7.71

We investigate the personalization speed of FedAvg and FedBABU by controlling the fine-tuning
epochs τf in the evaluation process. Table 5 describes the initial (when τf is 0) and personalized
(otherwise) accuracy of FedAvg and FedBABU. Here, 1 epoch is equal to 10 updates in our case
because each client has 500 training samples and the batch size is 50. It is shown that FedAvg requires
sufficient epochs for fine-tuning, as reported in [23]. Notably, FedBABU achieves better accuracy
with a small number of epochs. It means that FedBABU can personalize accurately and rapidly,
especially when fine-tuning is either costly or restricted.

5.2.4 Body Aggregation and Body Update on the FedProx
Table 6: Initial and personalized accuracy of FedProx and FedProx+BABU with µ of 0.01 on
CIFAR100 with 100 clients and f of 0.1.

FL settings s=100 (heterogeneity ↓) s=50 s=10 (heterogeneity ↑)
Algorithm τ Initial Personalized Initial Personalized Initial Personalized

FedProx
1 46.52±4.56 50.95±4.65 42.20±4.90 51.29±5.20 28.16±9.00 66.39±7.79
4 36.54±4.74 39.83±4.71 33.59±4.80 40.17±5.11 18.20±7.62 41.56±9.34

10 28.63±4.40 31.90±4.16 26.88±4.59 32.92±5.00 13.62±7.73 43.48±9.32

FedProx
+BABU

1 48.53±5.15 57.44±4.72 46.25±5.31 63.12±5.25 33.13±8.11 78.86±5.70
4 37.17±4.41 45.26±4.76 33.86±5.44 50.18±5.14 22.94±9.90 75.71±5.33

10 27.79±3.95 35.68±4.34 27.48±5.22 42.37±6.10 15.66±8.29 67.15±7.10

FedProx [28] regularizes the distance between a global model and local models to prevent local
models from deviating. The degree of regularization is controlled by µ. Note that when µ is 0.0,
FedProx is reduced to FedAvg. Table 6 describes the initial and personalized accuracy of FedProx and
FedProx+BABU with µ of 0.01 when f=0.1, and the results when f=1.0 are reported in Appendix L.
The global models trained by FedProx reduce the personalization capabilities compared to FedAvg
(refer to Table 1 when f=0.1), particularly under realistic FL settings. We adapt the body aggregation
and body update idea to the FedProx algorithm, referred to as FedProx+BABU, which performs better
than personalization of FedAvg. Furthermore, FedProx+BABU also has an improved personalized
performance compared to FedBABU (refer to Table 4 when f=0.1). This means that the regularization
of the body is still meaningful. Our algorithm and various experiments suggest future directions of
federated learning: Which parts should be federated and enhanced? Representation!

6 Conclusion
In this study, we focused on how to train a good federated global model for personalization purposes.
Based on parameter decoupling, we proposed the FedBABU algorithm, which learns a shared
global model that can rapidly adapt to heterogeneous data on each client. This global model can
be efficiently personalized by fine-tuning each client’s model using its own data set. Extensive
experimental results showed that FedBABU outperforms various personalized FL algorithms. Our
improvement emphasizes the importance of federating and enhancing the representation for FL.
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