
A Appendix: Proofs

A.1 Proofs

Lemma. 1 Let PA denote a matrix whose entry in row a and column k is p(A = a|K = k) (i.e. the
prior of group a in client k). Then, given a solution to the minimax problem across clients

h∗,λ∗ ∈ argmin
h∈H

max
λ∈Δ|K|−1

E
Dλ

[�(h(X), Y )], (10)

∃ µ∗ = PAλ∗ that is solution to the following constrained minimax problem across sensitive groups

h∗,µ∗ ∈ argmin
h∈H

max
µ∈PAΔ|K|−1

E
Dµ

[�(h(X), Y )], (11)

where the weighting vector µ is constrained to belong to the simplex subset defined by PAΔ|K|−1 ⊆
Δ|A|−1. In particular, if the set Γ =

�
µ� ∈ PAΔ|K|−1: µ� ∈ argmin

h∈H
max

µ∈Δ|A|−1
E
Dµ

[�(h(X), Y )]
�
�=

∅, then µ∗ ∈ Γ, and the minimax fairness solution across clients is also a minimax fairness solution
across demographic groups.

Proof. The objective for optimizing the global model for the worst mixture of client distributions is:

min
h∈H

max
λ∈Δ|K|−1

E
Dλ

[l(h(X), Y )] = min
h∈H

max
λ∈Δ|K|−1

|K|�

k=1

λk E
Dk

[l(h(X), Y )], (12)

given that Dλ =
|K|�
k=1

λkp(X,Y |K = k). Since p(X,Y |K = k) =
�
a∈A

p(A = a|K = k)p(X,Y |A)

with p(A = a|K = k) being the prior of a ∈ A for client k, and p(X,Y |A = a) is the distribution
conditioned on the sensitive group a ∈ A, Eq. (12) can be re-written as:

min
h∈H

max
λ∈Δ|K|−1

|K|�
k=1

λk

�
a∈A

p(A = a|K = k) E
p(X,Y |A=a)

[l(h(X), Y )] =

min
h∈H

max
λ∈Δ|K|−1

�
a∈A

E
p(X,Y |A=a)

[l(h(X), Y )]
� |K|�

k=1

p(A = a|K = k)λk

�
=

min
h∈H

max
µ∈PAΔ|K|−1

�
a∈A

µa E
p(X,Y |A=a)

[l(h(X), Y )].

(13)

Where we defined µa =
|K|�
k=1

p(A = a|K = k)λk, ∀a ∈ A, this creates the vector µ = PAλ ⊆

PAΔ|K|−1. It holds that the set of possible µ vectors satisfies PAΔ|K|−1 ⊆ Δ|A|−1, since PA =�
{p(A = a|K = k)}a∈A

�
k∈K ∈ IR

|A|×|K|
+ , with

�
a∈A

p(A = a|K = k) = 1 ∀k and λ ∈ Δ|K|−1.

Then, from the equivalence in Equation 13 we have that, given any solution

h∗,λ∗ ∈ argmin
h∈H

max
λ∈Δ|K|−1

E
Dλ

[�(h(X), Y )], (14)

then µ∗ = PAλ
∗ is solution to

h∗,µ∗ ∈ argmin
h∈H

max
µ∈PAΔ|K|−1

E
Dµ

[�(h(X), Y )], (15)

and
E

Dµ∗
[�(h∗(X), Y )] = E

Dλ∗
[�(h∗(X), Y )]. (16)

In particular, if the space defined by PAΔ|K|−1 contains any group minimax fair weights, meaning
that the set Γ =

�
µ� ∈ PAΔ|K|−1: µ� ∈ argmin

h∈H
max

µ∈Δ|A|−1
E
Dµ

[�(h(X), Y )]
�

is not empty, then it
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follows that any µ∗ (solution to Equation 15) is already minimax fair with respect to the groups
µ∗ ∈ Γ. And therefore the client-level minimax solution is also a minimax solution across sensitive
groups.

Lemma. 2 Consider our federated learning setting (Figure 1, right) where each entity k has access
to a local dataset Sk =

�
a∈A Sa,k and a centralized machine learning setting (Figure 1, left) where

there is a single entity that has access to a single dataset S =
�

k∈K Sk =
�

k∈K
�

a∈A Sa,k (i.e. this
single entity in the centralized setting has access to the data of the various clients in the distributed
setting).

Then, Algorithm 1 and Algorithm 2 (in supplementary material, Appendix B) lead to the same global
model provided that learning rates and model initialization are identical.

Proof. We will show that FedMinMax, in Algorithm 1 is equivalent to the centralized algorithm, in
Algorithm 2 under the following conditions:

1. the dataset on client k, in FedMinMax is Sk =
�

a∈A Sa,k and the dataset in centralized
MinMax is S =

�
k∈K Sk =

�
k∈K

�
a∈A Sa,k, and

2. the model initialization θ0, the number of adversarial rounds T ,5, learning rate for the
adversary ηµ and learning rate for the learner ηθ, are identical for both algorithms.

This can then be immediately done by showing that steps lines 3-7 in Algorithm 1 are entirely
equivalent to step 3 in Algorithm 2. In particular, note that we can write:

r̂(θ,µ) =
�
a∈A

µar̂a(θ)

=
�
a∈A

µa

�
k∈K

na,k

na
r̂a,k(θ)

=
�
a∈A

µa
n
na

1
n

�
k∈K

na,k r̂a,k(θ)

=
�
a∈A

wa
1
n

�
k∈K

na,k

nk
nkr̂a,k(θ)

=
�
k∈K

nk

n

�
a∈A

wa
na,k

nk
r̂a,k(θ)

=
�
k∈K

nk

n r̂k(θ,w)

(17)

because

r̂k(θ,w) =
�

a∈A

na,k

nk
war̂a,k(θ), with wa =

µa
na

n

, and r̂a(θ) =
�

k∈K

na,k

na
r̂a,k(θ). (18)

Therefore, the following model update:

θt =
�

k∈K

nk

n
θt
k =

�

k∈K

nk

n

�
θt−1 − ηθ∇θ r̂k(θ

t−1,wt−1)
�

(19)

associated with step in 7, at round t of Algorithm 1, is entirely equivalent to the model update

θt = θt−1 − ηθ∇θ r̂(θ
t−1,wt−1) (20)

associated with step in line 3 at round t of Algorithm 2, provided that θt−1 is the same for both
algorithms.

5In the federated Algorithm 1, we also refer to the adversarial rounds as communication rounds.
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It follows therefore by induction that, provided the initialization θ0 and learning rate ηθ are identical
in both cases the algorithms lead to the same model. Also, from Eq. 18, we have that the projected
gradient ascent step in line 4 of Algorithm 2 is equivalent to the step in line 10 of Algorithm 1.

B Appendix: Experiments

B.1 Experimental Details

Datasets. For the experiments we use the following datasets:

• Synthetic. Let N and Ber be the normal and Bernoulli distributions. The data were
generated assuming the group variable A ∼ Ber( 12 ), the input features variable X ∼
N (0, 1) and the target variable Y |X,A = a ∼ Ber(h∗

a), where h∗
a = ul

a�[x ≤ 0] +
uh
a�[x > 0] is the optimal hypothesis for group A = a. We select {uh

0 , u
h
1 , u

l
0, u

l
1} =

{0.6, 0.9, 0.3, 0.1}. As illustrated in Figure 2, left side, the optimal hypothesis h is equal to
the optimal model for group A = 0.

• FashionMNIST. FashionMNIST is a grayscale image dataset which includes 60, 000 train-
ing images and 10,000 testing images. The images consist of 28×28 pixels and are classified
into 10 clothing categories. In our experiments we consider each of the target categories to
be a sensitive group too.

Figure 2: Illustration of the optimal hypothesis h and the conditional distributions p(Y |X) and
p(X|A) for the generated synthetic dataset.

Experimental Setting and Model Architectures. For all the datasets, we use three-fold cross
validation to compute the means and standard deviations of the accuracies and risks, with different
random initializations. Also note that each client’s data is unique, meaning that there are no duplicated
examples across clients. We assuming that every client is available to participate at each communica-
tion round for every method. For q-FedAvg we use q = {0.2, 5.0}. The learning rate of the classifier
for all methods is ηθ = 0.1 and for the adversary in AFL and FedMinMax we use ηµ = ηλ = 0.1.
The local iterations for FedAvg and q-FedAvg are E = 15. For AFL and FedMinMax the batch size
is equal to the number of examples per client while for FedAvg and q-FedAvg is equal to 100. For
the synthetic dataset, we use an MLP architecture consisting of four hidden layers of size 512 and in
the experiments for FashionMNIST we used a CNN architecture with two 2D convolutional layers
with kernel size 3, stride 1 and padding 1. Each convolutional layer is followed with a maxpooling
layer with kernel size 2, stride 2, dilation 1 and padding 0. All models were trained using Brier score
loss function. A summary of the experimental setup is provided in Table 3.

Software & Hardware. The proposed algorithms and experiments are written in Python, leveraging
PyTorch [23]. The experiments were realised using 1 × NVIDIA Tesla V100 GPU.

B.2 Additional Results

Experiments on FashionMNIST. In the Partial access to Sensitive Groups (PSG) setting, we
distribute the data across 40 participants, 20 of which have access to groups T-shirt, Trouser, Pullover,
Dress and Coat and the other 20 have access to Sandal, Shirt, Sneaker, Bag and Ankle Boot. The
data distribution is unbalanced across clients since the size of local datasets differs among clients
(i.e. ni �= nj∀i, j ∈ K, i �= j). In the Equal access to Sensitive Groups (ESG) setting, the
10 classes are equally distributed across the clients, creating a scenario where each client has
access to the same amount of data examples and groups (i.e. ni = nj∀i, j ∈ K, i �= j and
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Setting Method ηθ Batch Size Loss Hypothesis Type Epochs ηµ or ηλ
ESG,SSG AFL 0.1 nk Brier Score MLP - 0.1
ESG,SSG FedAvg 0.1 100 Brier Score MLP 15 -
ESG,SSG q-FedAvg 0.1 100 Brier Score MLP 15 -
ESG,SSG FedMinMax (ours) 0.1 nk Brier Score MLP - 0.1
ESG,SSG Centalized Minmax 0.1 nk Brier Score MLP - 0.1

ESG,SSG,PSG AFL 0.1 nk Brier Score CNN - 0.1
ESG,SSG,PSG FedAvg 0.1 100 Brier Score CNN 15 -
ESG,SSG,PSG FedMinMax (ours) 0.1 nk Brier Score CNN - 0.1
ESG,SSG,PSG Centalized Minmax 0.1 nk Brier Score CNN - 0.1

Table 3: Summary of parameters used in the training process for all experiments. Epochs refers to the
local iterations performed at each client,nk is the number of local data examples in client k, ηθ is the
model’s learning rate and ηµ or ηλ is the adversary learning rates.

na,i = na,j∀i, j ∈ K, a ∈ A, i �= j). Finally, in the Single access to Sensitive Groups (SSG) setting,
every client owns only one sensitive group and each group is distributed to only 4 clients. Again, the
local datasets are different, ni �= nj∀i, j ∈ K, i �= j, creating an unbalanced data distribution.

Figure 3: Worst Group, Best Group and Average accuracies for AFL, FedAvg and FedMinmax across
different federated learning scenarios on the FashionMNIST dataset.

We show a comparison of the worst group Shirt, the best group Trousers and the average accuracies
in Figure 3. FedMinMax enjoys a similar accuracy to the Centralized Minmax Baseline, as expected.
AFL has similar performance FedMinMax in SSG, where across client fairness implies group fairness,
in line with Lemma 1, and FedAvg has similar worst, best and average accuracy, across federated
settings. An extended version of group risks is shown in Table 4.

Setting Method T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle boot

ESG AFL 0.239±0.003 0.046±0.0 0.262±0.001 0.159±0.001 0.252±0.004 0.06±0.0 0.494±0.004 0.067±0.001 0.049±0.0 0.07±0.001
FedAvg 0.243±0.003 0.046±0.0 0.262±0.001 0.158±0.003 0.253±0.002 0.061±0.0 0.492±0.003 0.068±0.0 0.049±0.0 0.069±0.0
FedMinMax (ours) 0.261±0.006 0.191±0.016 0.256±0.027 0.217±0.013 0.223±0.031 0.207±0.027 0.307±0.01 0.172±0.016 0.193±0.021 0.156±0.011

SSG AFL 0.267±0.009 0.194±0.023 0.236±0.013 0.226±0.012 0.262±0.012 0.201±0.026 0.307±0.003 0.178±0.033 0.205±0.025 0.162±0.021
FedAvg 0.227±0.003 0.039±0.001 0.236±0.004 0.143±0.003 0.232±0.003 0.051±0.001 0.463±0.003 0.067±0.0 0.041±0.0 0.063±0.001
FedMinMax (ours) 0.269±0.012 0.2±0.026 0.238±0.017 0.231±0.013 0.252±0.034 0.2±0.024 0.309±0.011 0.177±0.03 0.205±0.032 0.169±0.013

PSG AFL 0.244±0.007 0.032±0.001 0.257±0.066 0.122±0.006 0.209±0.098 0.045±0.002 0.425±0.019 0.059±0.001 0.041±0.001 0.062±0.001
FedAvg 0.229±0.008 0.039±0.0 0.236±0.004 0.142±0.002 0.232±0.003 0.052±0.001 0.464±0.011 0.067±0.001 0.042±0.001 0.063±0.001
FedMinMax (ours) 0.263±0.013 0.177±0.026 0.228±0.011 0.21±0.019 0.238±0.025 0.182±0.03 0.31±0.008 0.16±0.027 0.184±0.031 0.154±0.018

Centalized Minmax Baseline 0.259±0.01 0.173±0.015 0.239±0.051 0.213±0.008 0.24±0.063 0.182±0.024 0.311±0.006 0.168±0.018 0.18±0.013 0.151±0.012

Table 4: Brier score risks for FedAvg, AFL and FedMinmax across different federated learning
settings on FashionMNIST dataset. Extension of Table 2.
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B.3 Centralized MinMax Algorithm

We provide the centralized version of FedMinMax in Algorithm 2.

Algorithm 2 CENTRALIZED MINMAX BASELINE

Input: T : total number of adversarial rounds, ηθ: model learning rate, ηµ: adversary learning rate,
Sa: set of examples for group a, ∀a ∈ A.

1: Server initializes µ0 ← ρ = {|Sa|/|S|}a∈A and θ0 randomly.
2: for t = 1 to T do
3: Server computes θt

k ← θt−1 − ηθ∇θ r̂(θ
t−1,µt−1)

4: Server updates
µt ← �

Δ|A|−1

�
µt−1 + ηµ∇µ� µt−1, r̂a(θ

t−1)�
�

5: end for
Outputs: 1

T

�T
t=1 θ

t
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