
Figure 3: Comparison of Time Complexity.

A Appendix

A.1 Experimental setup

The injected noise is symmetric, meaning corrupted labels are flipped to any other label uniformly at
random, and the noise ratios are linearly spaced between 0 and 1; when using 2 clients, their sets
have [0%, 50%] noise, when using 4 participants the noise rates are [0%, 0.25%, 0.5%, 0.75%] and
so on. Experiments are run with 5 seeds (which remain consistent across the evaluation of different
methods), and we only report mean values since variance was negligible. As we are more interested
in the cross-silo setting, we assume full client participation in every round.

To compute OR-SV, we use the adjusted version of OR presented in [30], which leads to a faster and
more accurate approximation by rearranging terms in the calculation.

For λ −MR, λ is set to 0.8, per the original paper. Federated Shapley is computed via the same
MR approximation, but without the time-decay. To compute round-level LOO, we measure each
client’s marginal contribution at every round, and sum up the per-round LOO both without weights
and multiplied by the value of the current round, i.e., the second-round LOO counts twice as much
as the first). The Reputation metric is the average of the Heaviside function applied to the LOO.
To arrive at OR-LC, notice that if we approximate all the pseudo-models, we can evaluate them to
formulate the LP problem constraints, which is trivial to solve. Since the LC is not unique, we report
the first imputation lying in the LC found by the LP solver.

Our setup on MNIST largely follows the setup of [30]. The model used is a two-layer MLP with 64
hidden units and Dropout (p = 0.5). No preprocessing is done apart from scaling the images to the
[0, 1] range. The number of training rounds is set to 5, and the number of local epochs to 10. Local
optimization uses SGD with momentum m = 0.5 and lr = 0.01.

For the CIFAR-10 experiment, the model used is adapted of the fast ResNet-9 presented in [31];
the architecture is the same but without Batch Norm, and optimization is simplified by training the
local models using Adam[32] with learning rate 1e − 3. The rounds and local epochs remain the
same as before. The multi-round approximations of λ-MR and FedShapley need the server to store
1024 ResNet models, causing a crash, even for our lightweight model (but highlighting their memory
footprint).

A.2 Time complexity of experiments

We can also examine the computational cost for each family of methods across the two datasets
and the number of participants. As expected, MR methods are much more expensive and almost
exponential to the number of participants due to high inference cost, but for the more complex
CIFAR-10 training, the training itself dominates.
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Table 1: Additional results on MNIST; Acc is the global model accuracy. Max Dif is the maximum
distance between elements of the payoff vector. Distance refers to the Euclidean distance from the
corresponding uniform vector. The time t is given in seconds. B is the total budget allocated by the
un-normalized payoffs, and the only metric calculated before they are normalized.
Participants 2 4 6 8 10

Acc Max Dif Dist t B Acc Max Dif Dist t B Acc Max Dif Dist t B Acc Max Dif Dist t B Acc Max Dif Dist t B

OR - Shapley 94.9 0.92 0.65 69 0.9 93.31 0.93 0.7 76 0.8 92.29 0.68 0.55 105 0.8 91.6 0.58 0.54 215 0.5 90.93 0.5 0.49 657 0.8

OR - LC 0.74 0.52 1 0.53 0.5 0.9 0.37 0.41 0.9 0.29 0.36 0.9 0.24 0.33 0.9

LOO no weights
94.95

0.98 0.69
84

2.4
93.3

0.98 0.84
91

1.3
92.29

1.04 0.9
97

0.4
91.6

0.82 0.73
105

0.2
90.9

0.56 0.52
112

0.1

LOO lin. weights 0.98 0.69 9.6 0.98 0.84 5.7 0.95 0.84 1.9 0.78 0.7 0.8 0.7 0.63 0.4

Reputation 0.22 0.15 1.6 0.18 0.18 2.9 0.2 0.2 3.2 0.15 0.16 5.4 0.14 0.18 6

λ-MR 94.85 0.44 0.31 80 3.4 93.34 0.42 0.3 116 3.4 92.35 0.35 0.28 261 3.3 91.62 0.32 0.29 836 3.4 90.95 0.29 0.28 3125 3.3

Federated Shapley 0.56 0.39 4.2 0.52 0.38 4.1 0.41 0.33 4 0.37 0.33 4 0.32 0.31 4

Table 2: Results on CIFAR-10; Acc is the global model accuracy. Max Dif is the maximum
distance between elements of the payoff vector. Distance refers to the Euclidean distance from the
corresponding uniform vector. The time t is given in seconds. B is the total budget allocated by the
un-normalised payoffs, and the only metric calculated before they are normalized.
Participants 2 4 6 8 10

Acc Max Dif Dist t B Acc Max Dif Dist t B Acc Max Dif Dist t B Acc Max Dif Dist t B Acc Max Dif Dist t B

OR - Shapley 0.84 0.62 0.44 653 0.71 0.78 0.46 0.34 687 0.68 0.73 0.42 0.34 863 0.63 0.68 0.46 0.42 1510 0.55 0.62 0.46 0.43 4186 0.53

OR - LC 0.31 0.22 0.84 0.41 0.33 0.78 0.3 0.24 0.73 0.23 0.22 0.68 0.17 0.21 0.62

LOO no weights
0.837

0.94 0.66
683

1.4
0.78

0.55 0.41
717

1.4
0.74

0.38 0.34
760

1.1
0.68

0.33 0.33
782

1.05
0.65

0.35 0.4
819

0.68

LOO lin. weights 0.74 0.52 6.1 0.47 0.35 5.84 0.31 0.27 4.6 0.29 0.27 4.3 0.29 0.32 2.9

Reputation 0.25 0.17 1.6 0.11 0.1 3.4 0.125 0.14 4.8 0.17 0.16 5.8 0.14 0.16 7

λ-MR 0.832 0.29 0.2 880 3.3 0.78 0.46 0.35 1130 3.4 0.74 0.48 0.4 2116 3.36 0.67 0.5 0.46 5000 3.36 - - - - -

Federated Shapley 0.3 0.21 3.2 0.45 0.34 2.9 0.49 0.4 2.62 0.5 0.46 2.28 - -

A.3 Additional metrics from experiments

Apart from the CE values themselves, we present here the final global accuracy since the test accuracy
is our utility function, the maximum difference between two elements in every payoff vector, the
Euclidean distance between each payoff vector and an uninformative equal split of the value, and
the total computation time. Since we are not concerned with a final model performance, we use the
accuracy on the test set as the utility function and do not separate a validation set.
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