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Abstract

Federated learning is a machine learning technique that enables training across
decentralized data. Recently, federated learning has become an active area of
research due to an increased focus on privacy and security. In light of this, a variety
of open source federated learning libraries have been developed and released.
We introduce FEDJAX, a JAX-based open source library for federated learning
simulations that emphasizes ease-of-use in research. With its simple primitives
for implementing federated learning algorithms, prepackaged datasets, models
and algorithms, and fast simulation speed, FEDJAX aims to make developing and
evaluating federated algorithms faster and easier for researchers. Our benchmark
results show that FEDJAX can be used to train models with federated averaging on
the EMNIST dataset in a few minutes and the Stack Overflow dataset in roughly
an hour with standard hyperparameters using TPUs.

1 Introduction

Federated learning is a machine learning setting where many clients collaboratively train a model
under the orchestration of a central server, while keeping the training data decentralized. Clients
can be either mobile devices or whole organizations depending on the task at hand [Konečnỳ et al.,
2016b,a, McMahan et al., 2017, Yang et al., 2019]. Federated learning is typically studied in two
scenarios: cross-silo and cross-device. In cross-silo federated learning, the number of clients is small,
where as in cross-device, the number of clients is very large and can be in the order of millions.
Figure 1 highlights key characteristics of most federated learning algorithms in the cross-device
settings. Typically, federated learning algorithms first initialize the model at the server and then
complete three key steps for each round of training:

1. The server selects a subset of clients to participate in training and sends the model to these
clients.

2. Each selected client completes some steps of training on their local data.

3. After training, the clients send their updated models to the server and the server aggregates
them together.

For example, Algorithm 1 illustrates the popular federated averaging algorithm [McMahan et al.,
2017], which follows the above three steps. Federated learning has demonstrated usefulness in a
variety of contexts, including next word prediction [Hard et al., 2018, Yang et al., 2018] and healthcare
applications [Brisimi et al., 2018]. We refer to [Li et al., 2019a, Kairouz et al., 2021] for a more
detailed survey of federated learning.

Federated learning poses several interesting challenges. For example, training typically occurs mostly
on small devices, limiting the size of models that can be trained. Furthermore, the devices may have
low communication bandwidth and require model updates to be compressed. Data is also distributed
in a non-i.i.d. fashion across devices which raises several optimization questions. Finally, privacy
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Figure 1: An example federated learning algorithm with four clients.

and security are of utmost importance in federated learning and addressing them requires techniques
ranging from differential privacy to cryptography.

Given these challenges, federated learning has become an increasingly active area of research. This
includes new learning scenarios [Mohri et al., 2019, Abay et al., 2020], optimization algorithms [Li
et al., 2018, Yu et al., 2019, Li et al., 2019b, Haddadpour and Mahdavi, 2019, Khaled et al., 2020,
Karimireddy et al., 2019, Ro et al., 2021], compression algorithms [Suresh et al., 2017, Caldas et al.,
2018a, Xu et al., 2020], differentially private algorithms [Agarwal et al., 2018, Peterson et al., 2019,
Sattler et al., 2019], cryptography techniques [Bonawitz et al., 2017], and algorithms that incorporate
fairness [Li et al., 2020, Du et al., 2020, Huang et al., 2020]. Motivated by this, there are several
libraries for federated learning, including, TensorFlow Federated [TFF, 2018], PySyft [Ryffel et al.,
2018], FedML [He et al., 2020], FedTorch [Ludwig et al., 2020], and Flower [Ludwig et al., 2020].

Recently, JAX [Bradbury et al., 2018] was introduced to provide utilities to convert Python functions
into Accelerated Linear Algebra (XLA) optimized kernels, where compilation and automatic dif-
ferentiation can be composed arbitrarily. This enables expressiveness for sophisticated algorithms
and efficient performance without leaving Python. Given its ease-of-use, several libraries to support
machine learning have been built on top of JAX, including, but not limited to, Flax [Heek et al., 2020],
Objax [Objax Developers, 2020], Jraph [Godwin* et al., 2020], and Haiku [Hennigan et al., 2020] for
neural network architectures and training, Optax [Hessel et al., 2020] for optimizers, Chex [Budden
et al., 2020a] for testing, and RLax [Budden et al., 2020b] for reinforcement learning.

We present FEDJAX, a JAX and Python based library for federated learning simulation for research.
FEDJAX is designed for ease-of-use for research and is not intended to be deployed over distributed
devices. Focusing on ease-of-use, the FEDJAX API is structured to reduce the amount of new
concepts that users have to learn to get started and comes packaged with several standard datasets,
models, and algorithms that can be used straight out of the box. Additionally, since it is based on
JAX, FEDJAX can run on accelerators (GPU and TPU) with minimal additional effort.

The rest of the paper is organized as follows. In Section 2, we overview the system design, in
Section 3, we demonstrate a sample federated learning algorithm with FEDJAX, and in Section 4, we
benchmark training with FEDJAX on two datasets.

2 System design

A typical federated learning experiment consists of a federated dataset, model and optimizer, local
client training strategy, and server aggregation strategy, so we structure FEDJAX accordingly. The
design was primarily driven by ease-of-use and performance when addressing the challenges uniquely
attributed to using JAX for federated learning.

2.1 Datasets and models

Federated dataset In the context of federated learning, data is decentralized and distributed across
clients, with each client having their own local set of examples. We refer to two levels of organization
for datasets:

• Federated dataset: A collection of clients, each with their own local dataset and metadata.
• Client dataset: The set of local examples for a particular client.
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Figure 2: EMNIST dataset characteristics. Left: Histogram of number of clients as a function of
number of samples. Right: Histogram of number of clients as a function of the size of the final batch,
with batch size 10.
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Figure 3: Resulting batches for three clients of various sizes with different batching strategies applied.

In its simplest form, federated datasets are just mappings from clients to their local examples.
Specifically, clients have a unique identifier for querying their local dataset, which is essentially
treated as a list of examples. Furthermore, these local client datasets are typically small as seen in the
EMNIST example in Figure 2. This is in contrast to standard centralized machine learning which
requires iterating over a single dataset in a large number of batches. With this difference in mind,
we designed fedjax.FederatedData and fedjax.ClientDataset to rely mostly on NumPy and
Python, making it easy to use and troubleshoot. Finally, in order to take full advantage of JAX, we
also provide several helpful functions for accessing and iterating over federated and client datasets.
We refer readers to the tutorial1 for an overview of these functionalities.

JIT efficient batching Despite the small size of client datasets, there is no guarantee that their
sizes will be the same. As a result, when we run batch evaluation on client datasets, the sizes of the
final batch can vary greatly depending on the client, as shown in Figure 2. This poses a practical
challenge when using JAX. For best performance, jax.jit2 is used to perform Just In Time (JIT)
compilation of a JAX Python function into XLA compiled machine code. jax.jit invokes the XLA
compiler for each unique combination of input shapes. Left alone, the large number of possible final
batch sizes results in excessive JIT recompilations, significantly slowing execution time. In response
to this, we implemented three different batching strategies:

• batch produces batches in a fixed sequential order without padding the final batch. This is
included mostly for illustration purposes.

• padded_batch produces padded batches in a fixed sequential order for evaluation. By
padding the final batch to a small number of fixed sizes, we can set a limit on the maximum
number of possible JIT recompilations. This is typically used in evaluation.

• shuffle_repeat_batch produces batches in a shuffled and repeated order for training
where shuffling is done without replacement and batches are always the same size. This is
typically used in training.

Figure 3 showcases the resulting batches using each of these batching strategies for different client
dataset sizes.

1https://fedjax.readthedocs.io/en/latest/notebooks/dataset_tutorial.html
2https://jax.readthedocs.io/en/latest/jax-101/02-jitting.html
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Model and optimizer The model and optimizer described in this section are unchanged between the
standard centralized learning setting and the federated learning setting. There are already numerous
JAX based libraries for neural networks and optimizers, such as Flax, Haiku, Objax, and Optax. Thus,
for convenience, FEDJAX provides an implementation-agnostic wrapper to make porting existing
models and optimizers into FEDJAX as simple as possible. For example, using an existing Haiku
model in FEDJAX is as easy as wrapping the module in a fedjax.Model. We refer readers to the
tutorial3 for an overview of these functionalities.

Included datasets and models Currently in federated learning research, there are a variety of
commonly used datasets and models, such as image recognition, language modeling, and more. A
growing set of these datasets and models can be used straight out of the box in FEDJAX. This not
only encourages valid comparisons between various federated algorithms but also accelerates the
development of new algorithms since the preprocessed datasets and models are readily available for
use and do not have to be written from scratch.

At present, FEDJAX comes packaged with the following datasets and sample models:

• EMNIST-62 [Caldas et al., 2018b], a character recognition task

• Shakespeare [McMahan et al., 2017], a next character prediction task

• Stack Overflow [Reddi et al., 2020], a next word prediction task

FEDJAX also provides tools to create new datasets and models that can be used with the rest of
the library along with implementations of federated averaging [McMahan et al., 2017] and other
algorithms, such as adaptive federated optimizers [Reddi et al., 2020], agnostic federated averaging
[Ro et al., 2021], and Mime [Karimireddy et al., 2020].

Metrics When evaluating accuracy on a dataset, we wish to know the proportion of examples that
are correctly predicted by the model. In federated learning specifically, we typically want to know the
accuracy for each client and over all clients. Thus, we need to divide the work across clients, evaluate
each separately, and finally somehow combine the results.

Assuming the metric evaluation logic is JIT compiled, this faces the same issue of excessive recompi-
lations due to different subset sizes resulting in shape differences. While padded_batch can be used
to address this issue, it will also result in batches padded with empty examples which should not be
counted in the metric calculation. In an effort to improve ease-of-use while maintaining performance,
we designed fedjax.Metric to be defined on a single example rather than a batch of examples.
This way, the metric calculation can be freely vectorized with jax.vmap4 and empty examples in
padded batches ignored without users having to explicitly account for this themselves.

2.2 Client training and aggregators

Client training As mentioned previously, federated learning experiments typically include a step of
training across decentralized and distributed clients. FEDJAX provides core functions for expressing
this step. Because simulation is the focus, there is no need to introduce any design or technical
overhead for distributed machine communication. Instead, the entire per-client work can run on a
single machine, making the API simpler and the execution faster in most cases.

In its simplest form, a basic for-loop can be used for conducting training across multiple clients
in FEDJAX. For even faster training speeds, FEDJAX provides the fedjax.for_each_client
primitive backed by jax.jit and jax.pmap5, which enables the simulation work to easily run on
one or more accelerators such as GPU and TPU. We refer readers to the tutorial6 for an overview
of these functionalities. By defining client work in terms of fedjax.for_each_client, we are
able to arbitrarily group cohorts of clients to be executed in parallel for greater performance without
additional burden on the user.

3https://fedjax.readthedocs.io/en/latest/notebooks/model_tutorial.html
4https://jax.readthedocs.io/en/latest/jax.html?highlight=vmap#jax.vmap
5https://jax.readthedocs.io/en/latest/jax.html?highlight=pmap#jax.pmap
6https://fedjax.readthedocs.io/en/latest/notebooks/algorithms_tutorial.html
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Algorithm 1 Federated averaging algorithm [McMahan et al., 2017]
procedure FEDERATEDAVERAGING

T : total number of rounds, c: number of
clients per round, ηs: server learning rate.

Initialize parameters: w0

for round t = 1 to T do
Ct ← (random set of c clients)
for client k ∈ Ct do

∆k, nk ← CLIENTUPDATE(k,wt−1)

end for
wt ← wt−1 − ηs

∑
k∈Ct

nk∆k∑
k′∈Ct

nk′

end for
end procedure

procedure CLIENTUPDATE(k,w)
Sk: dataset of client k, B: batch size, E:

Number of epochs, ηc: client learning rate.
w′ ← w
B ← (split Sk into batches of size B)
for epoch e = 1 to E do

for batch b ∈ B do

w′ ← w′ − ηc∇
∑

(xi,yi)∈b

L(w′, xi, yi)

end for
end for
return w − w′, |Sk|

end procedure

Server aggregation The final step of server aggregation is often what differs the most significantly
between federated learning algorithms. Thus, making this step as easily expressible and interpretable
as possible is a core design goal of FEDJAX. This is achieved by providing basic underlying functions
for working with model parameters, which are usually structured as pytrees7 in JAX, as well as
high-level pre-defined common aggregators in fedjax.aggregators. These aggregators can also
be used to implement compression and differentially private federated learning algorithms.

3 Example

In this section, we demonstrate how to implement federated averaging with FEDJAX. Because
FEDJAX only introduces a few core concepts and is clear and straightforward, code written in
FEDJAX tends to resemble the pseudo-code used to describe novel algorithms in research papers,
making it easy to get started with. While FEDJAX provides primitives for federated learning, they
are not required and can be replaced with just NumPy and JAX. The advantage of building on top of
JAX is that even the most basic implementations can still be reasonably fast.

Below, we walk through a simple example of federated averaging (Algorithm 1) for linear regression
implemented in FEDJAX. The first steps are to set up the experiment by loading the federated dataset,
initializing the model parameters, and defining the loss and gradient functions. The code for these
steps is given in Figure 3.

import jax
import jax.numpy as jnp
import fedjax

# {"client_id": client_dataset}
federated_data = fedjax.FederatedData()
# Initialize model parameters
server_params = jnp.array(0.5)
# Mean squared error
mse_loss = lambda params, batch: jnp.mean(

(jnp.dot(batch["x"], params) - batch["y"])**2)
# jax.jit for XLA and jax.grad for autograd
grad_fn = jax.jit(jax.grad(mse_loss))

Figure 4: Dataset and model initialization.

Next, we use fedjax.for_each_client to coordinate the training that occurs across multi-
ple clients. For federated averaging, client_init initializes the client model using the server

7https://jax.readthedocs.io/en/latest/pytrees.html

5

https://jax.readthedocs.io/en/latest/pytrees.html


model, client_step completes one step of local mini-batch SGD, and client_final re-
turns the difference between the initial server model and the trained client model. By using
fedjax.for_each_client, this work will run on any available accelerators and possibly in parallel
because it is backed by jax.jit and jax.pmap. While this is already simple to implement, the
same could also be written out as a basic for-loop over clients if desired. The code for these steps is
given in Figure 5. This code implements the CLIENTUPDATE procedure of federated averaging from
Algorithm 1.

# For-loop over clients with client learning rate 0.1
for_each_client = fedjax.for_each_client(

client_init=lambda server_params, _: server_params,
client_step=(

lambda params, batch: params - grad_fn(params, batch) * 0.1),
client_final=lambda server_params, params: server_params - params)

Figure 5: Client update.

Finally, we run federated averaging for 100 training rounds by sampling clients from the federated
dataset, training across these clients using fedjax.for_each_client, and aggregating the client
updates using weighted averaging to update the server model in Figure 6. This code implements the
FEDERATEDAVERAGING procedure of federated averaging from Algorithm 1.

# 100 rounds of federated training
for _ in range(100):

clients = federated_data.clients()
client_updates = []
client_weights = []
for client_id, client_update in for_each_client(server_params, clients):

client_updates.append(client_update)
client_weights.append(federated_data.client_size(client_id))

# Weighted average of client updates
server_update = (

jnp.sum(client_updates * client_weights) /
jnp.sum(client_weights))

# Server learning rate of 0.01
server_params = server_params - server_update * 0.01

Figure 6: Server update and the federated learning algorithm.

4 Benchmarks

We benchmark the FEDJAX federated averaging implementation on the image recognition task for
the federated EMNIST-62 dataset [Caldas et al., 2018b] and the next word prediction task for Stack
Overflow [Reddi et al., 2020].

The EMNIST-62 dataset consists of 3400 writers and their writing samples, which are one of 62
classes (alphanumeric). Following Reddi et al. [2020], we train a convolutional neural network for
1500 rounds with 10 clients per round using federated averaging. We run experiments on GPU (a
single NVIDIA V100) and TPU (a single TensorCore on a Google TPU v2) and report the final test
accuracy, overall execution time, average training round duration, and full evaluation time in Table 1.
We note that with a singleTensorCore, training takes under five minutes.

The Stack Overflow dataset consists of questions and answers from the Stack Overflow forum,
grouped by username. This dataset consists of roughly 342K users in the train split and 204K in
the test split. Following Reddi et al. [2020], we train a single layer LSTM for 1500 rounds with 50
clients per round using federated averaging. We run experiments on GPU (a single NVIDIA V100),
TPU (a single TensorCore on a Google TPU v2) using only jax.jit, and multi-core TPU (eight
TensorCores on a Google TPU v2) using jax.pmap and report results in Table 2. Benchmarks show
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Table 1: Benchmark results on EMNIST with federated averaging.

Hardware Test accuracy Overall (s) Average training round (s) Full evaluation (s)
GPU 85.92% 418 0.26 7.21
TPU 85.85% 258 0.16 4.06

Table 2: Benchmark results on Stack Overflow with federated averaging.

Hardware Test accuracy Overall (m) Average training round (s) Full evaluation (m)
GPU 24.74% 127.2 4.33 17.32

TPU (jax.jit) 24.44% 106.8 3.73 11.97
TPU (jax.pmap) 24.67% 48.0 1.26 11.97

that with multiple TensorCores, recurrent language models can be trained in under an hour. Figure 7
also shows the average training round duration as the number of clients per round increases. We
note that training with multiple TensorCores is substantially faster as the number of clients per round
increases.
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Figure 7: Stack Overflow average training round duration as the number of clients per round increases.

5 Conclusion

We introduced FEDJAX, a JAX-based open source library for federated learning simulations that
emphasizes ease-of-use in research. FEDJAX provides simple primitives for federated learning along
with a collection of canonical datasets, models, and algorithms to make developing and evaluating
federated algorithms easier and faster. Implementing additional algorithms, datasets, and models
remains an on-going effort.
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Sebastian Caldas, Jakub Konečny, H Brendan McMahan, and Ameet Talwalkar. Expanding the reach
of federated learning by reducing client resource requirements. arXiv preprint arXiv:1812.07210,
2018a.

Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMahan, Virginia Smith, and
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