
Secure Aggregation for Buffered Asynchronous
Federated Learning

Jinhyun So
ECE Department

University of Southern California (USC)
jinhyuns@usc.edu

Ramy E. Ali
ECE Department

University of Southern California (USC)
reali@usc.edu

Başak Güler
ECE Department

University of California, Riverside
bguler@ece.ucr.edu

A. Salman Avestimehr
ECE Department

University of Southern California (USC)
avestime@usc.edu

Abstract
Federated learning (FL) typically relies on synchronous training, which is slow due
to stragglers. While asynchronous training handles stragglers efficiently, it does
not ensure privacy due to the incompatibility with the secure aggregation protocols.
A buffered asynchronous training protocol known as FedBuff has been proposed
recently which bridges the gap between synchronous and asynchronous training to
mitigate stragglers and to also ensure privacy simultaneously. FedBuff allows the
users to send their updates asynchronously while ensuring privacy by storing the
updates in a trusted execution environment (TEE) enabled private buffer. TEEs,
however, have limited memory which limits the buffer size. Motivated by this
limitation, we develop a buffered asynchronous secure aggregation (BASecAgg)
protocol that does not rely on TEEs. The conventional secure aggregation protocols
cannot be applied in the buffered asynchronous setting since the buffer may have
local models corresponding to different rounds and hence the masks that the users
use to protect their models may not cancel out. BASecAgg addresses this challenge
by carefully designing the masks such that they cancel out even if they correspond
to different rounds. Our convergence analysis and experiments show that BASecAgg
almost has the same convergence guarantees as FedBuff without relying on TEEs.

1 Introduction
Federated learning (FL) allows users to collaboratively train a machine learning model without
sharing their data and while protecting their privacy [18]. The training is typically coordinated
by a central server. The main idea that enables decentralized training without sharing data is that
each user trains a local model using its dataset and the global model maintained by the server.
The users then only share their local models with the server which updates the global model and
pushes it again to the users for the next training round until convergence. Recent studies, however,
showed that sharing the local models still breaches the privacy of the users through inference or
inversion attacks e.g., [10, 19, 30, 11]. To overcome this challenge, secure aggregation protocols
were developed to ensure that the server only learns the global model without revealing the local
models [4, 24, 13, 29, 9, 2]. FL protocols commonly rely on synchronous training [18], which
suffers from stragglers due to waiting for the updates of a sufficient number of users at each round.
Asynchronous FL tackles this by incorporating the updates of the users as soon as they arrive at the
server [27, 26, 6, 7]. While asynchronous FL handles stragglers efficiently, it is not compatible with
the secure aggregation protocols designed particularly for synchronous FL. This is because these
protocols securely aggregate many local models together each time the global model is updated and
hence they are not suitable for asynchronous FL in which each single local model updates the global
model. Another approach that can be applied in asynchronous FL to protect the privacy of the users

1st NeurIPS Workshop on New Frontiers in Federated Learning (NFFL 2021), Virtual Meeting.

mailto:jinhyuns@usc.edu
mailto:reali@usc.edu
mailto:bguler@ece.ucr.edu
mailto:avestime@usc.edu

is local differential privacy (LDP) [25]. In this approach, each user adds a noise to the local model
before sharing it with the server. This approach, however, degrades the training accuracy.

In [20], an asynchronous aggregation protocol known as FedBuff has been proposed to mitigate
stragglers and enable secure aggregation jointly. FedBuff enables secure aggregation through trusted
execution environments (TEEs) as Intel software guard extensions (SGX) [8]. Specifically, the
individual updates are not incorporated by the server as soon they arrive. Instead, the server keeps
the received local models in a TEE-enabled secure buffer of size K, where K is a tunable parameter.
The server then updates the global model when the buffer is full. This idea has been shown to be 3.8
times faster than the conventional synchronous FL schemes.

Contributions. Since TEEs have limited memory, which limits the buffer size K, and are inefficient
compared to the untrusted hardware [8], we instead develop a buffered asynchronous secure
aggregation protocol that does not rely on TEEs. The main challenge of leveraging the conventional
secure aggregation protocols in the buffered asynchronous setting is that the pairwise masks may
not cancel out. This is because of the asynchronous nature of this setting which may result in local
models of different rounds in the buffer, while the pairwise masks cancel out if they belong to the
same round. This requires a careful design of the masks such that they can be cancelled even if they
do not correspond to the same round. Specifically, our contributions are as follows.
1. We propose a buffered asynchronous secure aggregation protocol that extends a recently

proposed synchronous secure aggregation protocol known as LightSecAgg [28] to this buffered
asynchronous setting. The key idea of our protocol, BASecAgg, is that we design the masks such
that they cancel out even if they correspond to different training rounds.

2. We extend the convergence analysis of [20] to the case where the local updates are quantized,
which is necessary for the secure aggregation protocols to protect the privacy of the local updates.

3. Our extensive experiments on MNIST and CIFAR datasets show that BASecAgg almost has the
same convergence guarantees as FedBuff despite the quantization.

Related Works. Secure aggregation protocols typically rely on exchanging pairwise random-seeds
and secret sharing them to tolerate users’ dropouts [4, 24, 13, 2]. The running time of such approaches,
however, increases significantly with the number of dropped users since the server reconstructs the
mask of each dropped user. Recently, a secure aggregation protocol known as LightSecAgg has been
proposed to address this challenge [28]. In LightSecAgg, unlike the prior works, the server directly
reconstructs the aggregate masks of all surviving users, which results in a much faster training. The
protocol of [29] is based on the one-shot reconstruction idea, but it requires a trusted third party unlike
LightSecAgg. Prior secure aggregation protocols [4, 24, 13, 2, 28, 29] are designed for synchronous
FL [18], which suffer from stragglers. Asynchronous FL handles this problem by updating the global
model as soon as the server receives any local model [27, 26, 6, 7]. The larger the staleness is of the
local model, the greater is the error when updating the global model [27]. Various techniques have
been proposed to mitigate this problem through staleness-aware averaging [27, 6, 21].

Asynchronous FL, however, is not compatible with secure aggregation. A potential approach to
ensure privacy then is through DP approaches that add noise to the local models before sharing
them with the server [26, 12]. Adding noise, however, degrades the training accuracy. In [20], an
asynchronous aggregation protocol known as FedBuff has been proposed to mitigate stragglers while
ensuring privacy. The key idea of FedBuff is that the server stores the local models in a TEE-enabled
secure buffer of size K until the buffer is full and then securely aggregates them. Due to the memory
limitations of TEEs, this approach is only feasible when K is small. This motivates us in this work to
develop a buffered asynchronous secure aggregation protocol without TEEs.

2 Buffered Asynchronous Secure Aggregation
In this section, we provide a brief overview of FedBuff [20] and then illustrate the incompatibility
of the conventional secure aggregation with asynchronous FL. Later on, we introduce BASecAgg.
The goal in FL is to collaboratively learn a global model x ∈ Rd, using the local datasets of N users
without sharing them. This problem is formulated as minimizing a global loss function as follows

min
x∈Rd

F (x) =

N∑
i=1

wiFi(x), (1)

where Fi is the local loss function of user i ∈ [N] and wi ≥ 0 are the weight parameters that indicate
the relative impact of the users and are selected such that

∑N
i=1 wi = 1. This problem is solved

2

iteratively in synchronous or asynchronous FL. We provide an overview of secure aggregation of
synchronous FL in Appendix A and now discuss asynchronous FL.

In asynchronous FL, the updates of the users are not synchronized while the goal is the same as the
synchronous FL to minimize the global loss function in (1). In the buffered asynchronous setting,
the server stores each local model that it receives in a buffer of size K and updates the global model
when the buffer is full. In our setting, this buffer is not a secure buffer. Hence, our goal is to design
the secure aggregation protocol where users send the masked updates to protect the privacy in a way
that the server can aggregate the local updates while the server (and potential colluding users) learns
no information about the local updates beyond the aggregate of the updates stored in the buffer.

FedBuff. Before presenting our protocol, BASecAgg, we first provide an overview about the buffered
asynchronous aggregation framework, named FedBuff [20], and describe the challenges that render
SecAgg incompatible with this framework. The key intuition of FedBuff is to introduce a new design
parameter K, the buffer size at the server, so that FedBuff has two degrees of freedom, K and the
concurrency C while the synchronous FL frameworks have only one degree of freedom, concurrency.
The concurrency is the number of users training concurrently and is an important parameter to provide
a trade-off between the training time and the data inefficiency. Synchronous FL speeds up the training
by increasing the concurrency, but higher concurrency results in data inefficiency [20]. In FedBuff,
however, a high concurrency coupled with a proper value of K results in fast training. In other words,
the additional degree of freedom K allows the server to update more frequently than concurrency,
which enables FedBuff to achieve data efficiency at high concurrency.

At round t, C users are locally training the model by carrying out E ≥ 1 local SGD steps. When the
local update is done, user i sends the difference between the downloaded global model and updated
local model to the server. The local update of user i sent to the server at round t is given by

∆
(t;ti)
i = x(ti) − x(E)

i , (2)

where ti is the latest round index when the global model is downloaded by user i and t is the round
index when the local update is sent to the server, hence the staleness of user i is given by τi = t− ti.
x(E)
i denotes the local model after E local SGD steps and the local model at user i is updated as

x(e)
i = x(e−1)i − ηlgi(x(e−1)i ; ξi) (3)

for e = 1, . . . , E, where x(0)i = x(ti), ηl denotes learning rate of the local updates. gi(x; ξi)
denotes the stochastic gradient with respect to the random sampling ξi on user i, and we assume
Eξi [gi(x; ξi)] = ∇Fi(x) for all x ∈ Rd where Fi is the local loss function of user i defined in (1).
The server stores the received local updates in a buffer of size K. When the buffer is full, the server
updates the global model by subtracting the aggregate of all local updates from the current global
model. Specifically, the global model at the server is updated as

x(t+1) = x(t) − ηg∑
i∈S(t) s(t− ti)

∑
i∈S(t)

s(t− ti)∆(t;ti)
i , (4)

where S(t) is an index set of the K users whose local models are in the buffer at round t and ηg is the
learning rate of the global updates. s(τ) is a function that compensates for the staleness satisfying
s(0) = 1 and is monotonically decreasing as τ increases. There are many functions that satisfy these
two properties and we consider a polynomial function sα(τ) = (τ + 1)−α as it shows similar or
better performance than the other functions e.g., Hinge or Constant stale function [27].

Privacy and Dropout Model. We assume at most D users may dropout in any round and a threat
model where the users and the server are honest but curious who follow the protocol but try to infer
the local updates of the other users. The secure aggregation protocol guarantees that nothing beyond
the aggregate of the local updates is revealed, even if up to T users collude with the server. We
consider information-theoretic privacy where from every subset of users T ⊆ [N] of size at most
T , we must have mutual information I({∆(t;ti)

i }i∈[N];Y
(t)|
∑
i∈S(t) ∆

(t;ti)
i ,Z

(t)
T) = 0, where Y(t)

and Z
(t)
T are the collection of information at the server and at the users in T at round t, respectively.

2.1 Incompatibility of SecAgg with Buffered Asynchronous FL
As described in Appendix A.1, SecAgg [4] is designed for synchronous FL. At round t, each pair of
users i, j ∈ [N] agree on a pairwise random-seed a(t)i,j , and generate a random vector by running PRG

3

based on the random seed of a(t)i,j to mask the local update. This additive structure has the unique
property that these pairwise random vectors cancel out when the server aggregates the masked models
because user i(< j) adds PRG(a

(t)
i,j) to x(t)

i and user j(> i) subtracts PRG(a
(t)
i,j) from x(t)

j .

In the buffered asynchronous FL, however, the cancellation of the pairwise random masks based
on the key agreement protocol is not guaranteed due to the mismatch in staleness between users.
Specifically, at round t, user i ∈ S(t) sends the masked model y(t;ti)

i to the server that is given by

y(t;ti)
i = ∆

(t;ti)
i + PRG

(
b
(ti)
i

)
+
∑
j:i<j

PRG
(
a
(ti)
i,j

)
−
∑
j:i>j

PRG
(
a
(ti)
j,i

)
, (5)

where ∆
(t;ti)
i is the local update defined in (2). When ti 6= tj , the pairwise random vectors in y(t;ti)

i

and y(t;tj)
j are not canceled out as a(ti)i,j 6= a

(tj)
i,j . We note that the identity of the staleness of each

user is not known a priori, hence each pair of users cannot use the same pairwise random-seed.

2.2 The Proposed BASecAgg Protocol

To address the challenge of asynchrony in the buffered asynchronous secure aggregation, we propose
BASecAgg by modifying the idea of one-shot recovery leveraged in LightSecAgg [28] to our setting.
We provide a brief overview of LightSecAgg in Appendix A.2. Our key intuition is to encode the
local masks in a way that the server can recover the aggregate of masks from the encoded masks via
a one-shot computation even though the masks are generated in different training rounds.
Specifically, the users share the encoded masks with the time stamps to figure out which encoded
masks should be aggregated for the reconstruction of the aggregate masks. Due to the commutative
property of coding and addition, the server can reconstruct the aggregate masks even though the
masks are generated in different training rounds. In particular, BASecAgg has three phases. First,
each user generates a random mask to protect the privacy of the local update, and further creates
encoded masks via a T -private Maximum Distance Separable (MDS) code that provides privacy
against T colluding users. Each user sends one of the encoded masks to one of the other users for the
purpose of one-shot recovery. Second, each user trains a local model and converts it from the domain
of real numbers to the finite field as generating random masks and MDS encoding are required to be
carried out in the finite field to provide information-theoretic privacy. Then, the quantized model is
masked by the random mask generated in the first phase, and sent to the server. The server stores
the masked update in the buffer. Third, when the buffer is full, the server aggregates the K masked
updates in the buffer. To remove the randomness in the aggregate of the masked updates, the server
reconstructs the aggregated masks of the users in the buffer. To do so, each surviving user sends the
aggregate of encoded masks to the server. After receiving a sufficient number of aggregated encoded
masks, the server reconstructs the aggregate of masks and hence the aggregate of the K local updates.
We now describe these three phases in detail.

2.2.1 Offline Encoding and Sharing of Local Masks
User i generates z(ti)i uniformly at random from the finite field Fdq , where ti is the global round

index when user i downloads the global model from the server. The mask z(ti)i is partitioned into
U − T sub-masks denoted by [z(ti)i]1, · · · , [z(ti)

i]U−T , where U denotes the targeted number of
surviving users and N − D ≥ U ≥ T . User i also selects another T random masks denoted by
[n(ti)
i]U−T+1, · · · , [n(ti)

i]U . These U partitions [z(ti)i]1, · · · , [z(ti)i]U−T , [n
(ti)
i]U−T+1, · · · , [n(ti)

i]U
are then encoded through an (N,U) Maximum Distance Separable (MDS) code as follows

[z̃(ti)
i]j =

(
[z(ti)i]1, · · · , [z(ti)

i]U−T , [n
(ti)
i]U−T+1, · · · , [n(ti)

i]U

)
vj , (6)

where vj is the j-th column of a Vandermonde matrix V ∈ FU×Nq . After that, user i sends [z̃(ti)i]j to

user j ∈ [N] \ {i}. At the end of this phase, each user i ∈ [N] has [z̃(tj)
j]i from j ∈ [N].

2.2.2 Training, Quantizing, Masking, and Uploading of Local Updates
Each user i trains the local model as in (2) and (3). User i quantizes its local update ∆

(t;ti)
i from the

domain of real numbers to the finite field Fq as masking and MDS encoding are carried out in the
finite field to provide information-theoretic privacy. The field size q is assumed to be large enough to
avoid any wrap-around during secure aggregation.

4

The quantization is a challenging task as it should be performed in a way to ensure the convergence
of the global model. Moreover, the quantization should allow the representation of negative integers
in the finite field, and enable computations to be carried out in the quantized domain. Therefore,
we cannot utilize well-known gradient quantization techniques such as in [1], which represents the
sign of a negative number separately from its magnitude. BASecAgg addresses this challenge with
a simple stochastic quantization strategy combined with the two’s complement representation as
described next. For any positive integer c ≥ 1, we first define a stochastic rounding function as

Qc(x) =

{
bcxc
c with prob. 1− (cx− bcxc)
bcxc+1

c with prob. cx− bcxc,
(7)

where bxc is the largest integer less than or equal to x, and this rounding function is unbiased, i.e.,
EQ[Qc(x)] = x. The parameter c is a design parameter to determine the number of quantization
levels. The variance of Qc(x) decreases as the value of c increases, which will be described in
Lemma 1 in Appendix B in detail. We then define the quantized update

∆
(t;ti)

i := φ
(
cl ·Qcl

(
∆

(t;ti)
i

))
, (8)

where the function Qc from (7) is carried out element-wise, and cl is a positive integer parameter to
determine the quantization level of the local updates. The mapping function φ : R→ Fq is defined to
represent a negative integer in the finite field by using the two’s complement representation,

φ(x) =

{
x if x ≥ 0
q + x if x < 0.

(9)

To protect the privacy of the local updates, user i masks the quantized update ∆
(t;ti)

i in (8) as

∆̃
(t;ti)
i = ∆

(t;ti)

i + z(ti)i , (10)

and sends the pair of
{

∆̃
(t;ti)
i , ti

}
to the server. The local round index ti will be used in two cases:

(1) when the server identifies the staleness of each local update and compensates it, and (2) when the
users aggregate the encoded masks for one-shot recovery, which will be explained in Section 2.2.3.

2.2.3 One-shot Aggregate-update Recovery and Global Model Update

The server stores ∆̃
(t;ti)
i in the buffer, and when the buffer of size K is full the server aggregates the

K masked local updates. In this phase, the server intends to recover∑
i∈S(t)

s(t− ti)∆(t;ti)
i , (11)

where ∆
(t;ti)
i is the local update in the real domain defined in (2), S(t) (

∣∣S(t)∣∣ = K) is the index set
of users whose local updates are stored in the buffer and aggregated by the server at round t, and s(τ)

is the staleness function defined in (4). To do so, the first step is to reconstruct
∑
i∈S(t) s(t− ti)z(ti)i .

This is challenging as the decoding should be performed in the finite field, but the value of s(τ) is a real
number. To address this problem, we introduce a quantized staleness function s : {0, 1, . . . , } → Fq ,

scg (τ) = cgQcg (s(τ)) , (12)

where Qc(·) is a stochastic rounding function defined in (7), and cg is a positive integer to
determine the quantization level of staleness function. Then, the server broadcasts information
of
{
S(t), {ti}i∈S(t) , cg

}
to all surviving users. After identifying the selected users in S(t), the

local round indices {ti}i∈S(t) and the corresponding staleness, user j ∈ [N] aggregates its encoded

sub-masks
∑
i∈S(t) scg (t− ti)

[
z̃(ti)
i

]
j

and sends it to the server for the purpose of one-shot recovery.

The key difference between BASecAgg and LightSecAgg is that in BASecAgg, the time stamp ti for
encoded masks

[
z̃(ti)
i

]
j

for each i ∈ S(t) can be different, hence user j ∈ [N] must aggregate the

encoded mask with the proper round index. Due to the commutative property of coding and linear
operations, each

∑
i∈S(t) scg (t− ti)

[
z̃(ti)i

]
j

is an encoded version of
∑
i∈S(t) scg (t− ti)

[
z(ti)i

]
k

5

for k ∈ [U − T] using the MDS matrix (or Vandermonde matrix) V defined in (6). Thus, after
receiving a set of any U results from surviving users in U2, where |U2| = U , the server reconstructs∑
i∈S(t) scg (t − ti)

[
z(ti)i

]
k

for k ∈ [U − T] via MDS decoding. By concatenating the U − T

aggregated sub-masks
∑
i∈S(t) scg (t− ti)

[
z(ti)i

]
k
, the server can recover

∑
i∈S(t) scg (t− ti)z(ti)i .

Finally, the server obtains the desired global update as follows

g(t) =
1

cgcl
∑
i∈S(t) scg (t− ti)

φ−1

 ∑
i∈S(t)

scg (t− ti)∆̃(t;ti)
i −

∑
i∈S(t)

scg (t− ti)z(ti)i

 , (13)

where cl is defined in (8) and φ−1 : Fq → R is the demapping function defined as follows

φ−1(x) =

{
x if 0 ≤ x < q−1

2

x− q if q−1
2 ≤ x < q.

(14)

Finally, the server updates the global model as x(t+1) = x(t) − ηgg(t), which is equivalent to

x(t+1) = x(t) − ηg∑
i∈S(t) Qcg (s(t− ti))

∑
i∈S(t)

Qcg (s(t− ti))Qcl
(

∆
(t;ti)
i

)
, (15)

where Qcl and Qcg are the stochastic rounding function defined in (7) with respect to quantization
parameters cl and cg , respectively.

3 Convergence Analysis
In this section, we provide the convergence guarantee of BASecAgg in the L-smooth and non-convex
setting. For simplicity, we consider the constant staleness function s(τ) = 1 for all τ in (15). Then,
the global update equation of BASecAgg is given by

x(t+1) = x(t) − ηg
K

∑
i∈S(t)

Qcl

(
∆

(t;ti)
i

)
, (16)

where Qcl is the stochastic round function defined in (7), cl is the positive constant to determine
the quantization level, and ∆

(t;ti)
i is the local update of user i defined in (2). We first introduce our

assumptions, which are commonly made in analyzing FL algorithms [16, 20, 22, 23].
Assumption 1. (Unbiasedness of local SGD). For all i ∈ [N] and x ∈ Rd, Eξi [gi(x; ξi)] = ∇Fi(x)
where gi(x; ξi) is the stochastic gradient estimator of user i defined in (3).
Assumption 2. (Lipschitz gradient). F1, . . . , FN in (1) are all L-smooth: for all a, b ∈ Rd and
i ∈ [N], ‖∇Fi(a)−∇Fi(b)‖2 ≤ L‖a− b‖2.
Assumption 3. (Bounded variance of local and global gradients). The variance of the stochastic
gradients at each user is bounded, i.e., Eξi ‖∇gi(x; ξi)−∇Fi(x)‖2 ≤ σ2

l for i ∈ [N] and x ∈ Rd.
For the global loss function F (x) defined in (1), 1

N

∑N
i=1 ‖∇Fi(x)−∇F (x)‖2 ≤ σ2

g holds.
Assumption 4. (Bounded gradient). For all i ∈ [N], ‖∇Fi(x)‖2 ≤ G.
In addition, we make an assumption on the staleness of the local updates under asynchrony [20].
Assumption 5. (Bounded staleness). For each global round index t and all users i ∈ [N], the delay
τ
(t)
i = t− ti is not larger than a certain threshold τmax where ti is the latest round index when the

global model is downloaded to user i.

Now, we state our main result for the convergence guarantee of BASecAgg.
Theorem 1. Selecting the constant learning rates ηl and ηg such that ηlηgKE ≤ 1

L , the global
model iterates in (16) achieve the following ergodic convergence rate

1

J

J−1∑
t=0

E
[
|∇F (x(t))|2

]
≤ 2F ∗

ηgηlEKT
+
Lηgηlσ

2
cl

2
+ 3L2E2η2l

(
η2gK

2τ2max

)
σ2, (17)

where F ∗ = F (x(0))− F (x∗), σ2 = G+ σ2
g + σ2

cl
, and σ2

cl
= d

4cl2
+ σ2

l .

The proof of Theorem 1 is provided in Appendix B.
Remark 1. Theorem 1 shows that convergence rates of BASecAgg and FedBuff (see Corollary 1 in
[20]) are the same except for the increased variance of the local updates due to the quantization noise
in BASecAgg. The amount of the increased variance d

4cl2
in σ2

cl
= d

4cl2
+ σ2

l is negligible for large
cl, which will be demonstrated in our experiments in Section 4.

6

4 Experiments
In this section, we demonstrate the convergence performance of BASecAgg compared to the buffered
asynchronous FL scheme from [20] termed FedBuff. We measure the performance in terms of the
model accuracy evaluated over the test samples with respect to the global round index t.

Datasets and network architectures. We consider an image classification task on the MNIST
dataset [15] and CIFAR-10 dataset [14]. For MNIST dataset, we train LeNet [15]. For the CIFAR-10
dataset, we train the convolutional neural network (CNN) used in [27]. These network architectures
are sufficient for our needs as our goal is to evaluate various schemes, not to achieve the best accuracy.
More details about hyperparameters are provided in Appendix C. Setup. We consider a buffered
asynchronous FL setting with N = 100 users and a single server having the buffer of size K = 10.
For IID data distribution, the training samples are shuffled and partitioned into N = 100 users. For
asynchronous training, we assume the staleness of each user is uniformly distributed over [0, 10], i.e.,
τmax = 10, as in [27]. We set the field size q = 232 − 5, which is the largest prime within 32 bits.

Implementations. We implement two schemes, FedBuff and BASecAgg. The key difference
between two schemes is that in BASecAgg, the local updates are quantized and converted into the
finite field to provide privacy of the individual local updates while all operations are carried out over
the domain of real numbers in FedBuff. For both schemes, to compensate the staleness of the local
updates, we employ the two strategies for the weighting function: a constant function s(τ) = 1 and a
polynomial function sα(τ) = (1 + τ)−α.

Empirical results. In Figure 1(a) and 1(b), we demonstrate that BASecAgg has almost the
same performance as FedBuff on both MNIST and CIFAR-10 datasets while BASecAgg includes
quantization noise to protect the privacy of individual local updates of users. This is because the
quantization noise in BASecAgg is negligible as explained in Remark 1. To compensate the staleness
of the local updates over the finite field in BASecAgg, we implement the quantized staleness function
defined in (12) with cg = 26, which has the same performance to mitigate the staleness as the original
staleness function carried out over the domain of real numbers.

(a) MNIST dataset. (b) CIFAR-10 dataset.

Figure 1: Accuracy of BASecAgg and FedBuff with two strategies for the weighting function to mitigate
the staleness: a constant function s(τ) = 1 (no compensation) named Constant; and a polynomial function
sα(τ) = (1 + τ)−α named Poly where α = 1.

(a) MNIST dataset. (b) CIFAR-10 dataset.

Figure 2: Accuracy of BASecAgg and FedBuff with various values of the quantization parameter cl = 2cbit .

Performance with various quantization levels. To investigate the impact of the quantization, we
measure the performance with various values of the quantization parameter cl on MNIST and CIFAR-
10 datasets in Fig. 2. We can observe that cl = 216 has the best performance while small or large
values of cl have poor performance. This is because the value of cl provides a trade-off between two
sources of quantization noise: 1) the rounding error from the stochastic rounding function defined in
(7) and 2) the wrap-around error when modulo operations are carried out in the finite field. When cl
has small value the rounding error is dominant while the wrap-around error is dominant when cl has
large value. To find a proper value of cl, we can utilize the auto-tuning algorithm proposed in [5].

7

References
[1] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:

Communication-efficient sgd via gradient quantization and encoding. In Advances in Neural
Information Processing Systems, pages 1709–1720, 2017.

[2] James Henry Bell, Kallista A Bonawitz, Adrià Gascón, Tancrède Lepoint, and Mariana Raykova.
Secure single-server aggregation with (poly) logarithmic overhead. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security, pages 1253–1269, 2020.

[3] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan,
Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for
federated learning on user-held data. arXiv preprint arXiv:1611.04482, 2016.

[4] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan,
Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for
privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 1175–1191, 2017.

[5] Keith Bonawitz, Fariborz Salehi, Jakub Konečnỳ, Brendan McMahan, and Marco Gruteser.
Federated learning with autotuned communication-efficient secure aggregation. In 2019 53rd
Asilomar Conference on Signals, Systems, and Computers, pages 1222–1226. IEEE, 2019.

[6] Zheng Chai, Yujing Chen, Liang Zhao, Yue Cheng, and Huzefa Rangwala. FedAt: A
communication-efficient federated learning method with asynchronous tiers under non-iid
data. arXiv preprint arXiv:2010.05958, 2020.

[7] Yujing Chen, Yue Ning, Martin Slawski, and Huzefa Rangwala. Asynchronous online federated
learning for edge devices with non-iid data. In 2020 IEEE International Conference on Big
Data (Big Data), pages 15–24. IEEE, 2020.

[8] Victor Costan and Srinivas Devadas. Intel sgx explained. IACR Cryptol. ePrint Arch.,
2016(86):1–118, 2016.

[9] Ahmed Roushdy Elkordy and A Salman Avestimehr. Secure aggregation with heterogeneous
quantization in federated learning. arXiv preprint arXiv:2009.14388, 2020.

[10] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit
confidence information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pages 1322–1333, 2015.

[11] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients–
how easy is it to break privacy in federated learning? arXiv preprint arXiv:2003.14053,
2020.

[12] Bin Gu, An Xu, Zhouyuan Huo, Cheng Deng, and Heng Huang. Privacy-preserving
asynchronous vertical federated learning algorithms for multiparty collaborative learning. IEEE
Transactions on Neural Networks and Learning Systems, 2021.

[13] Swanand Kadhe, Nived Rajaraman, O Ozan Koyluoglu, and Kannan Ramchandran. Fastsecagg:
Scalable secure aggregation for privacy-preserving federated learning. arXiv preprint
arXiv:2009.11248, 2020.

[14] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

[15] Yann LeCun. The MNIST database of handwritten digits. http://yann. lecun. com/exdb/mnist/,
1998.

[16] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence
of fedavg on non-iid data. In International Conference on Learning Representations, 2019.

[17] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error correcting
codes, volume 16. Elsevier, 1977.

8

[18] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Int. Conf. on
Artificial Int. and Stat. (AISTATS), pages 1273–1282, 2017.

[19] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis of deep
learning: Passive and active white-box inference attacks against centralized and federated
learning. In 2019 IEEE symposium on security and privacy (SP), pages 739–753. IEEE, 2019.

[20] John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Michael Rabbat,
Mani Malek Esmaeili, and Dzmitry Huba. Federated learning with buffered asynchronous
aggregation. arXiv preprint arXiv:2106.06639, 2021.

[21] Jungwuk Park, Dong-Jun Han, Minseok Choi, and Jaekyun Moon. Sself: Robust federated
learning against stragglers and adversaries. 2020.

[22] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

[23] Jinhyun So, Ramy E Ali, Basak Guler, Jiantao Jiao, and Salman Avestimehr. Securing secure
aggregation: Mitigating multi-round privacy leakage in federated learning. arXiv preprint
arXiv:2106.03328, 2021.

[24] Jinhyun So, Başak Güler, and A Salman Avestimehr. Turbo-aggregate: Breaking the quadratic
aggregation barrier in secure federated learning. IEEE Journal on Selected Areas in Information
Theory, 2(1):479–489, 2021.

[25] Stacey Truex, Ling Liu, Ka-Ho Chow, Mehmet Emre Gursoy, and Wenqi Wei. Ldp-fed:
Federated learning with local differential privacy. In Proceedings of the Third ACM International
Workshop on Edge Systems, Analytics and Networking, pages 61–66, 2020.

[26] Marten van Dijk, Nhuong V Nguyen, Toan N Nguyen, Lam M Nguyen, Quoc Tran-Dinh, and
Phuong Ha Nguyen. Asynchronous federated learning with reduced number of rounds and
with differential privacy from less aggregated gaussian noise. arXiv preprint arXiv:2007.09208,
2020.

[27] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asynchronous federated optimization. arXiv
preprint arXiv:1903.03934, 2019.

[28] Chien-Sheng Yang, Jinhyun So, Chaoyang He, Songze Li, Qian Yu, and Salman Avestimehr.
LightSecAgg: Rethinking secure aggregation in federated learning. arXiv preprint
arXiv:2109.14236, 2021.

[29] Yizhou Zhao and Hua Sun. Information theoretic secure aggregation with user dropouts. arXiv
preprint arXiv:2101.07750, 2021.

[30] Ligeng Zhu and Song Han. Deep leakage from gradients. In Federated Learning, pages 17–31.
Springer, 2020.

9

A Synchronous Secure Aggregation

In this appendix, we provide an overview of secure aggregation of synchronous FL.
The goal in FL is to collaboratively learn a global model x with dimension d, using the local datasets
of N users without sharing them. This problem can be formulated as minimizing a global loss
function as follows

min
x∈Rd

F (x) =

N∑
i=1

wiFi(x), (18)

where Fi is the local loss function of user i ∈ [N] and wi ≥ 0 are the weight parameters that indicate
the relative impact of the users and are selected such that

∑N
i=1 wi = 1.

This problem is solved iteratively. At round t, the server sends the global model x(t) to the users.
Some of the users may dropout due to various reasons such as wireless connectivity. We assume
that at most D users may dropout in any round. We denote the set of the surviving users at round
t by U (t) and the set of dropped users by D(t). User i ∈ [N] updates the global model by carrying
out E ≥ 1 local stochastic gradient descent (SGD) steps. The goal of the server is to get the sum of
the local models of the surviving users to update its global model as x(t) = 1

|U(t)|
∑
i∈U(t) x(t)

i . The

server then sends x(t) to the users for the next round. While the users do not share their data with the
server and just share their local models, the local models still reveal significant information about
their datasets [10, 19, 30, 11]. To address this challenge, a secure aggregation protocol known as
SecAgg was developed in [3] to ensure that the server does not learn anything about the local models
except

∑
i∈U(t) x(t)i at round t. Specifically, we assume that up to T users can collude with each other

as well as with the server to reveal the local models of other users. The secure aggregation protocol
then must ensure that nothing is revealed beyond the aggregate model despite such collusions.

A.1 Overview of SecAgg [4]

We now provide an overview of SecAgg. In this discussion, we omit the round index t for simplicity
since the procedure is the same at each round. SecAgg ensures privacy against any subset of up to T
colluding users and resiliency against D colluding workers provided that N > D + T .
In SecAgg, the users mask their models before sharing them with the server using random keys.
Specifically, each pair of users i, j ∈ [N] agree on a pairwise random seed ai,j . Moreover, user i
also uses a private random seed bi that is used when the update of this user is delayed but eventually
reaches the server. The model of user i is then masked as follows

yi = xi + PRG(bi) +
∑
j:i<j

PRG(ai,j)−
∑
j:i>j

PRG(aj,i), (19)

where PRG is a pseudo random generator. The server then reconstructs the private random-seed of
each surviving user, the pairwise random-seed of each dropped user and recovers the aggregate model
of the surviving users as follows

∑
i∈U

xi =
∑
i∈U

(yi − PRG(bi)) +
∑
i∈D

∑
j:i<j

PRG(ai,j)−
∑
j:i>j

PRG(aj,i)

 . (20)

A.2 Overview of LightSecAgg [28]

Next, we provide an overview of LightSecAgg. LightSecAgg has three parameters T that represents
the privacy guarantee, D that represents that dropout guarantee and U which represents the targeted
number of surviving users. These parameters must be selected such that N − D ≥ U ≥ T . In
LightSecAgg, user i selects a random mask zi and partitions it to U − T sub-masks denoted by
[zi]1, · · · , [zi]U−T . User i also selects another T random masks denoted by [ni]U−T+1, · · · , [ni]U .
These U partitions [zi]1, · · · , [zi]U−T , [ni]U−T+1, · · · , [ni]U are then encoded through an (N,U)
Maximum Distance Separable (MDS) code [17] as follows

[z̃i]j = ([zi]1, · · · , [zi]U−T , [ni]U−T+1, · · · , [ni]U) vj , (21)

where vj is the j-th column of a Vandermonde matrix V ∈ FU×Nq . After that, user i sends [z̃i]j to
user j ∈ [N] \ {i}. User i then masks its model as yi = xi + zi.

10

The goal of the server now is to recover the aggregate model
∑
i∈U1 xi, where U1 is the set of surviving

users in this phase. To do so, each surviving users j ∈ U1 sends
∑
i∈U1 [z̃i]j to the server. The server

then directly recovers
∑
i∈U1 [zi]k for k ∈ [U − T] through MDS decoding when it receives at least

U messages from the surviving users. We denote this subset of the surviving users by U2, where
|U2| = U . Finally, the server recovers the aggregate model as

∑
i∈U1 xi =

∑
i∈U1 yi −

∑
i∈U1 zi.

B Theoretical Guarantees of BASecAgg: Proof of Theorem 1

The proof of Theorem 1 directly follows from the following useful lemma that shows the unbiasedness
and bounded variance still hold for the quantized gradient estimator Qc(g(x, ξ)) for any x ∈ Rd.
Lemma 1. For the quantized gradient estimator Qc(g(x, ξ)) with a given vector x ∈ Rd where ξ
is a uniform random variable representing the sample drawn, g is a gradient estimator such that
Eξ[g(x, ξ)] = ∇F (x) and Eξ‖g(x, ξ)−∇F (x)‖2 ≤ σ2

l , and the stochastic rounding function Qc is
given in (7), the following holds,

EQ,ξ[Qc(g(x, ξ))] = ∇F (x) (22)

EQ,ξ‖Qc(g(x, ξ))−∇F (x)‖2 ≤ σ2
c , (23)

where σ2
c = d

4c2 + σ2
l .

Proof. (Unbiasedness). Given Qc in (7) and any random variable x, it follows that,

EQ [Qc(x) | x] =
bcxc
c

(1− (cx− bcxc)) +
(bcxc+ 1)

c
(cx− bcxc)

= x (24)
from which we obtain the unbiasedness condition in (22),

EQ,ξ[Qc(g(x, ξ))] = Eξ
[
EQ[Qc(g(x, ξ)) | g(x, ξ)]

]
= Eξ

[
g(x, ξ)

]
= ∇F (x). (25)

(Bounded variance). Next, we observe that,

EQ
[(
Qc(x)− EQ[Qc(x) | x]

)2 | x]
=

(
bcxc
c
− x
)2

(1− (cx− bcxc)) +

(
bcxc+ 1

c
− x
)2

(cx− bcxc)

=
1

c2

(
1

4
−
(
cx− bcxc − 1

2

)2
)

≤ 1

4c2
(26)

from which we obtain the bounded variance condition in (23) as follows,
EQ,ξ‖Qc(g(x, ξ))−∇F (x)‖2

= Eξ
[
EQ[‖Qc(g(x, ξ))−∇F (x)‖2 | g(x, ξ)]

]
≤ Eξ

[
EQ[‖Qc(g(x, ξ))− g(x, ξ)‖2 | g(x, ξ)]

]
+ Eξ

[
EQ[‖g(x, ξ)−∇F (x)‖2 | g(x, ξ)]

]
(27)

≤ d

4c2
+ σ2

l (28)

= σ2
c ,

where (27) follows from the triangle inequality and (28) follows form (26).

Now, the update equation of BASecAgg is equivalent to the update equation of FedBuff except that
BASecAgg has an additional random source, stochastic quantization Qcl , which also satisfies the
unbiasedness and bounded variance. One can show the convergence rate of BASecAgg presented
in Theorem 1 by exchanging Eξ and variance-bound σ2

l in [20] with EQcl
,ξ and variance-bound

σ2
cl

= d
4cl2

+ σ2
l , respectively.

11

C Experiment Details

In this appendix, we provide more details about the experiments of Section 4.

Hyperparameters. For all experiments, we tune the hyperparameters based on the validation
accuracy for each dataset by partitioning 20% of the training samples into the validation dataset. We
use mini-batch SGD for all tasks with a mini-batch size of 50. We select the best parameters for the
global learning rate ηg , local learning rate ηl, L2 regularization parameter λ, and staleness exponent
α with the following sweep ranges

ηg ∈ {1.0, 0.1, 0.01},
ηl ∈ {0.1, 0.03, 0.01, 0.003, 0.001},
λ ∈ {5e−3, 5e−4, 5e−5},
α ∈ {0.1, 0.5, 1.0, 1.5, 2.0}.

We have found that the best values of ηg, λ, and α are 1.0, 5e−4, and 1.0, respectively for both
MNIST and CIFAR-10 datasets. Finally, we have found that the best value of ηl is 0.01 and 0.1 for
MNIST and CIFAR-10 datasets, respectively.

12

	Introduction
	Buffered Asynchronous Secure Aggregation
	Incompatibility of SecAgg with Buffered Asynchronous FL
	The Proposed BASecAgg Protocol
	Offline Encoding and Sharing of Local Masks
	Training, Quantizing, Masking, and Uploading of Local Updates
	One-shot Aggregate-update Recovery and Global Model Update

	Convergence Analysis
	Experiments
	Synchronous Secure Aggregation
	Overview of SecAgg bonawitz2017practical
	Overview of LightSecAgg LightSecAgg2021

	Theoretical Guarantees of BASecAgg: Proof of Theorem 1
	Experiment Details

