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Abstract

Federated learning systems that jointly preserve Byzantine robustness and pri-
vacy have remained an open problem. Robust aggregation, the standard defense
for Byzantine attacks, generally requires server access to individual updates or
nonlinear computation – thus is incompatible with privacy-preserving methods
such as secure aggregation via multiparty computation. To this end, we propose
SHARE (Secure Hierarchical Robust Aggregation), a distributed learning frame-
work designed to cryptographically preserve client update privacy and robustness
to Byzantine adversaries simultaneously. The key idea is to incorporate secure
averaging among randomly clustered clients before filtering malicious updates
through robust aggregation. Experiments show that SHARE has similar robustness
guarantees as existing techniques while enhancing privacy.

1 Introduction
An increasing amount of data is being collected in a decentralized manner on devices across
institutions[9]. Traditionally, machine learning with such devices require centralized data col-
lection, which increases communication costs while posing a threat to privacy, especially when these
devices gather personal user data. Distributed learning frameworks like federated learning attempt to
address these issues by sharing model updates from client devices, rather than data, to a centralized
server [11, 9, 7, 14].

Among the most popular implementations of federated learning is Federated Averaging [15]. While
the central coordinating server follows a designated aggregation protocol, the required communication
can pose a privacy threat when the system is compromised by a malicious external agent leaking
individual model updates. To this end, Bonawitz et al. [3] proposed a secure averaging oracle that
masks individual client updates such that the server learns their average alone. Nevertheless, since
the collaboratively learned model update includes the contribution of all participating clients, benign
averaging might fall prey to incorrect device updates either due to arbitrary failures or maliciously
crafted updates preventing the devices from learning a good model.

In recent years, federated learning robustness to Byzantine failures (i.e., worst-case adversarial coor-
dinated training-time attacks) has gained attention. However, existing robust aggregation techniques
require sophisticated nonlinear operations [21, 24, 2], sometimes with server access to individual
model updates in the clear – thus leading to privacy loss. These nonlinear operations adversely
affect privacy since privacy-preserving methods such as secure Multi-Party Computation (MPC) are
inefficient for nonlinear operations [3]. This observation highlights a fundamental tension between
existing solutions to the two critical problems of privacy and robustness.
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To the best of our knowledge, ours is the first approach that scalably combines Byzantine-robustness
with privacy using the common single-server architecture. We prose a novel hierarchical framework
that decouples MPC-based privacy and Byzantine robustness protection mechanisms in this work.
The basic idea is to implement a secure averaging oracle among randomly clustered clients, then
filtering these updates using robust aggregation. This approach reveals only the cluster averaged
update to the server, thus can help preserve privacy. Simultaneously, the second level of robust
aggregation helps to maintain Byzantine robustness.

Taken together, this manuscript proposes a federated learning architecture that preserves security
and privacy jointly, thus addressing this gap in the literature. Due to the hierarchical approach,
existing robust distributed learning frameworks [21, 24, 2] and non-robust secure distributed learning
frameworks like [3, 4] can be considered special cases of our proposed approach. Summary
of contributions: We propose SHARE; a robust distributed learning framework which flexibly
incorporates any Byzantine-robust defenses while enhancing privacy in a single server systems
setting. We extend existing theoretical guarantees of robust aggregation oracles to the SHARE
framework. Further, we present empirical evaluation of SHARE on benchmark datasets.

Figure 1: This figure illustrates our proposed framework SHARE. Each global round consists of
multiple reclustering rounds, updates from which are averaged to obtain the final model update. In
each reclustering round (shown by dotted rectangle), updates from clients (numbered squares) are
clustered randomly (M1,M2,M3), then averaged followed by robust aggregation.

2 Related Work
Byzantine robustness and secure aggregation in distributed learning both have a large existing
literature – though often from different (somewhat disconnected) communities.

Robust Aggregation.Robustness to Byzantine adversaries is a well-studied problem in distributed
and federated learning [13]. Broadly, existing defenses can be categorized into distance-based robust
aggregation or validation data-based aggregation. The general idea behind distance-based metrics
is to find an update closer to the benign mean in l2 norm distance. Xie et al. [21] suggest utilizing
coordinate-wise trimmed mean. Blanchard et al. [2] choose a model update closest to most other
updates.Ghosh et al. [6] suggest optimal statistical rates utilizing median and trimmed mean. All
these distance-based defenses require a majority of the clients participating in the protocol to be
benign. On the other hand, validation data-based aggregation defenses such as Zeno [22, 24] perform
suspicion-based aggregation based on a score evaluated on validation data held at the server. These
methods can tolerate arbitrary Byzantine poisoning. All the above techniques require the server to
see the local model updates in the clear, posing a privacy threat.

Privacy via Secure Aggregation.In many distributed learning settings, the secure computation boils
down to computing a secure average. Bonawitz et al. [3] utilizes a pairwise secret share to achieve
the same. Aono et al. [1] follow a slightly different approach and utilize additively homomorphic
encryption for secure update computation. While these methods work well with linear aggregation
methods, extending secure multiparty computation to non-linear robust aggregation schemes intro-
duces additional computational and communication overhead, quickly becoming impractical for real
computational loads.
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He et al. [8], Pillutla et al. [16], Wang et al. [20] are the closest to our work in the sense that they are
proposed to address the problem of robustness and privacy in distributed learning jointly. Compared
to He et al. [8], which requires two non-colluding servers, we achieve this with a single server, which
may be a more realistic architecture for practical use cases. Further, He et al. [8] tailor their approach
to distance-based robust aggregation. In contrast, our proposed approach is easily combined with
most existing Byzantine-robust aggregation schemes, including filtering-based defenses such as
Zeno++ [24]. On the other hand, Pillutla et al. [16] reduce the filtering computation of the median
into a sequence of linear computations. Unfortunately, this approach requires that the Byzantine
device follows the computational protocol over multiple rounds, which is a strong assumption in
practice. Thus, while inspired by Byzantine tolerance, Pillutla et al. [16] do not claim Byzantine
robustness. After completing this work, we were made aware of a related approach [20] using a
hierarchical architecture with a robust mean aggregator. Compared to Wang et al. [20], our approach
is a wrapper method that can be combined with any robust aggregator, with analysis and performance
depending on the choice of aggregator (e.g., we analyze and compare trimmed mean, krum, Zeno++).
Further, we address the problem of signal loss due to clustering via a novel reclustering step.

3 Problem Formulation
We consider the optimization problem minx∈Rd F (x) where, F (x) = 1

n

∑
i∈[n] Ezi∼Di

fi(x; zi),
hence the goal is to learn a model x which performs well on average using zi sampled from local data
distribution Di,∀i ∈ [n]. The notations used in this paper are summarized in Table 1 (Appendix A).

This problem is solved in a distributed and iterative manner. In each global iteration (t < T ),
sampled clients compute a private model update (∆xKi ) by running multiple steps (K-steps) of
Stochastic Gradient Descent (SGD) on the local data available (zi ∼ Di). Then server can computes
a global model update. For instance, when using simple averaging, the server update is xt =
xt−1 + η

∑
i∈[n] ∆xKi , where η is global learning rate. We consider the following privacy and

security threats:

• Privacy threat model: We consider an honest but curious server. This specification allows
the server to interpret the device data from the updates, hence breaching privacy. The
assumption of honest server implies that the server still follows the underlying protocol.

• Robustness threat model: We consider a fixed (unknown) subset (q) of machines that can
co-ordinate and send arbitrary updates to the server hence deviating from the intended
distributed learning protocol.

4 Methodology
We propose two-step hierarchical aggregation SHARE (Secure Hierarchical Robust Aggregation) as a
defense against the specified robustness and privacy threat models. In particular, our approach allows
a decoupling of the security and robustness into two steps (as illustrated in Figure 1). First, in every
global epoch, all participating clients are clustered randomly into groups. Clients within each group
share pairwise secret keys and utilize them to mask their individual updates such that the server only
learns the average within the cluster. This ensures client update privacy. These client cluster updates
are then filtered using Byzantine-robust aggregation techniques. Further, we can repeat this process
multiple times in a global epoch to aid in reducing variance. The detailed algorithm is outlined in
Algorithm 1. Without loss of generality, we assume clusters of uniform size.

4.1 System Components

Secure Aggregation:This is the first step in hierarchical aggregation. We follow an approach similar
to [3], using pairwise keys between clients in a cluster. The server in this setup learns just the mean
and hence the privacy of individual client updates are protected (Detailed discussion in Appendix C).

Robust Aggregation:This is the second step in every reclustering round. In this step, the secure
cluster averages are filtered through robust aggregation. The goal ideally is to eliminate clusters with
malicious client updates. Any existing robustness techniques like trimmed mean[21], median[16]
or Zeno[24] can be utilized at this stage. We show theoretical guarantees and experiments based on
existing methods in the following sections.

Random Reclustering:As specified in Algorithm 1, we repeat the secure aggregation followed by
robust aggregation multiple times randomizing client clusters in each global epoch. Note that across
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Algorithm 1 SHARE (Secure Hierarchical Robust Aggregation)

0: Server:
1: for t = 0, . . . , T − 1 do
2: for r = 1, . . . , R do
3: Assign clients to clusters S =M1 ∪ . . . Mi . . . ∪Mc with |Mi| = |Mj |∀i, j ∈ [c]
4: Compute secure average grj ← SecureAggr({∆i}i∈Mj

) =
∑
i∈Mj

ui,∀j ∈ [c]

5: gr ← RobustAggr({grj}j∈[c])
6: end for
7: if stopping criteria met then
8: break
9: end if

10: Push xt = xt−1 + η 1
R

∑
r g

r to the clients
11: end for

Client:
12: for each client i ∈ S (if honest) in parallel do
13: xti,0 ← xt

14: for k = 0, . . . ,K − 1 do
15: Compute an unbiased estimate gti,k of ∇fi(xti,k)

16: xti,k+1 ← ClientOptimize(xti,k, g
t
i,k, ηl, k)

17: end for
18: ∆i = ni

n (xti,K − xt)
19: Push ∆i to the assigned clusters using secure aggregation
20: end for
21: return xT

these reclustering rounds, the same local model update is paired with different clients each time.
In addition to malicious updates, benign updates paired with malicious clients might be filtered in
the proposed approach. Reclustering helps mitigate this loss of signal and hence reduces variance.
In particular, as number of reclustering rounds (R) increase, the probability of this loss in signal
decreases (Detailed discussion in Appendix E).

Remark. Although reclustering increases communication cost, we note that in addition to helping
decrease the variance, reducing secure aggregation to within clusters, decreases communication cost
as pairwise key exchange is now limited to within the cluster. Hence overall, communication cost for
each client changes from O(n) to O(Rnm ). In experiments, we often find that even a single clustering
round gives good results (Section 6).

5 Theory
5.1 Exactness

Algorithm 1 can be implemented using any aggregation technique. However, due to clustering, the
result is resilient to fewer malicious clients – as (in the worst case) malicious clients are assumed to
completely corrupt their assigned cluster. We formalize these ideas next, with proofs in Appendix B.

Lemma 1. If robust aggregation is replaced by averaging, the output of Algorithm 1 is identical to
Federated Averaging[15].

Lemma 2. In presence of robust aggregation, Algorithm 1 is robust to q = q0
m adversaries, where q0

is the tolerance limit of the robust aggregation oracle followed and m is the cluster size.

5.2 Convergence Analysis

To highlight the flexibility of the proposed algorithm, we analyze convergence when using both using
a distance based robust aggregation strategy or a validation data based aggregation strategy, such as
Zeno++. We first define the few terms used to develop convergence analysis.

Definition 5.1 ((G,B)-Bounded Gradient Dissimilarity). There exists constants G ≥ 0, B ≥ 1 such
that 1

n

∑n
i ‖∇fi(x)‖2 ≤ G2 +B2‖∇F (x)‖2

Definition 5.2 (Bounded client updates variance). We define benign mean model update across
clients to be µ =

∑
i ∆K

i , hence the variance across client updates as E[‖∆K
i − µ‖2] ≤ σ2

g for all i
across all rounds of training
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Definition 5.3 (Bounded variance). For an unbiased stochastic gradient estimator with gi(x) =
∇fi(x, zi) we define bounded variance as Ezi [‖gi(x)−∇fi(x)‖] ≤ σ2 for any i, x

The difference between Definition 5.2 and 5.3 is that the former bounds the variance between model
updates across clients while the latter bounds the variance across gradient estimates within the same
client.

5.2.1 Convergence Rates

We now prove that Algorithm 1 converges for various robust aggregation oracles. Firstly, we state a
few general assumptions required to prove convergence guarantees standard in papers.
Assumption 5.1. There exists at least one global minima x∗ such that F (x∗) ≤ F (x),∀x
Assumption 5.2. We assume that F (x) is L-smooth and has µ-lower bounded Taylor approximation
(µ weak convexity)

〈∇F (x), y − x〉+
µ

2
‖y − x‖2 ≤ F (y)− F (x) ≤ 〈∇F (x), y − x〉+

L

2
‖y − x‖2

Note that this Assumption 5.2 covers the case of non-convexity by taking µ < 0. We note that each
distance based robust aggregation metric have different bounds from benign mean update. Since
the focus of this work is to propose an algorithm that unifies robustness with privacy, we do not
concentrate on those bounds and absorb such intricacies into an order constant. Formally,
Assumption 5.3. For any distance based robust aggregation algorithm, when fraction of faulty inputs
is below threshold, the output of robust aggregation is bounded from benign mean. That is, we
assume there exists a V2 such that for any set of vectors {vi : i ∈ C}, replaced by faulty vectors
∀i /∈ Ct ⊆ C, ‖RobustAggr({vi}i∈C)− 1

|Ct|
∑
i∈Ct vi‖ ≤ O(V2).

We note that Assumptions 5.1,5.2 are standard among existing Federated Learning literature [10,
22, 24]. Additionally Assumption 5.3 is a direct consequence of existing distance based robust
aggregation oracles [21, 16, 2]. Finally, for Algorithm 1 with such oracles, we have the following
theorem
Theorem 3. Consider a function F(x) satisfying Assumptions 5.1,5.2 assume a robust aggregation
scheme that picks up b updates and satisfies Assumption 5.3, further, assume (G,B)-Bounded gradient
dissimilarity, σ2

g variance in client updates and σ2 variance in gradient estimation, there exists η, ηl
such that output of Algorithm 1 after T rounds, xT , satisfies,

E
[
‖∇F (xT )‖2

]
≤ O

(
LM
√
F√

TKn
+
F 2/3(LG2)1/3

(T + 1)2/3
+
B2LF

T
+ 2L2V2 +

σ2
g

bm

(
n− q − bm
R(n− q)− 1

))
where M2 := σ2(1 + n

η2 ) and F := F (x0)− F (x∗)

Now we consider Zeno++[24], a defense utilizing server data. Although score based Zeno++ was
originally introduced for asynchronous SGD, we generalize it to federated learning setting hence
allowing for multiple local epochs. We illustrate this modified algorithm in Appendix B. As in Xie
et al. [24], we consider an additional standard assumption
Assumption 5.4. The validation set considered for Zeno++ is close to training set, implying a
bounded variance given by E[‖∇fs(x)−∇F (x)‖2] ≤ V1,∀x
Theorem 4. Consider L-smooth and potentially non-convex functions F (x) and fs(x), satisfying
Assumption 5.4. Assume ‖fs(x)‖2 ≤ V3,∀x. Further assuming G-bounded gradient dissimilarity,
variance between client updates be σ2

g and variance in gradient estimation at each client be σ,

with global and local learning rates of η ≤ 1
2L and ρ ≥ α

√
η

6K2η2lB
2 + η, after T global updates, let

D := F (x0)− F (x∗), Algorithm 1 with Zeno++ as robust aggregation converges at a critical point:
E[
∑
t∈[T ] ‖∇F (xt−1)‖2]

T
≤ E[D]

α
√
ηT

+

√
η

α
O

(
σ2
g

m

(
n− q −m
R(n− q)− 1

)
+G2 + σ2 + V1 + V3 + ε

)
Remark. It can be seen from both Theorem 3,4 that the additional terms, other than standard ones
appearing in the convergence rate for federated learning [10], depend on the error caused by the robust
aggregation scheme utilized and variance reduction from reclustering. Further, higher number of
reclustering rounds R decreases the effect of additional variance. Finally when R = 1,m = 1, q = 0,
these recover existing results for federated learning with robust aggregation.
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5.3 Privacy

Curious server:Since each client masks updates with random vectors as illustrated in Section 4, we
note that if we execute the mentioned secure averaging oracle with threshold t > m

2 , the protocol
can deal with dm2 e − 1 drop outs while learning nothing more than average. Reclustering introduces
additional vulnerability as server can see multiple averages. In particular, the probability that server

can decode a model update is O(1 −
(

(m!)c

n!

)R
). Hence as R increases this gets closer to 1 as

expected. Further, when all clients are in a single cluster (m = n, hence c=1), this is 0 as would
be the case with secure averaging without robustness. Further discussion, including comments on
privacy in presence of colluding curious clients can be found in Appendix C.

6 Experiments
In this section we evaluate the proposed algorithm SHARE with various defenses and corruption
models. We conduct experiments on CIFAR-10 [12] (Image classification dataset) and Shakespear
(a language modeling dataset from LEAF [5]). We note that we do not propose a new robustness
technique but rather we propose a modified federated learning architecture to incorporate any ro-
bustness protocol in a privacy preserving manner. Hence we focus our experiments on capturing the
effects of cluster sizes and reclustering rounds, hyperparameters introduced by our approach. We
defer descriptions of detailed training architecture to Appendix D

6.1 CIFAR-10

We train a CNN with two 5 × 5 convolutional layers followed by 2 fully connected layers[15] on
CIFAR-10 and report top-1 accuracy. We test SHARE incorporating various robust aggregation
protocols such as Trimmed mean [21], Krum [2], Zeno++ [24]. For all experiments in this section,
trimmed mean removes 2/3 of the updates before computing the mean. Additionally, we consider two
baselines, SHARE with no robust aggregation and SHARE with no attack. We consider homogeneous
distribution of data across clients for experiments in this section. Experiments on heterogeneous data
distributions can be found in Appendix D.

6.1.1 Impact of cluster size

We first test Byzantine-tolerance for various cluster sizes to mild attacks such as label-flip. In
particular, malicious clients train on wrong labels (images whose labels are flipped, i.e., any label
∈ {0, . . . , 9} is changed to 9-label). We consider 60 total clients of which q = 12 being malicious.
The result is shown in Figure 2 for various cluster sizes and robust aggregation protocols. It is seen

(a) Zeno++, q=12 (b) Krum, q=12 (c) Trimmed mean, q=12
Figure 2: Results of SHARE with various defenses on CIFAR-10, utilizing varying cluster sizes
under label flip attack. For Trimmed mean we remove 2/3 of input updates.

that having no defense diverges even with mild attacks as expected. Further Figure (2a) shows that
SHARE with a strong defense like Zeno++ converges to benign (no-attack) accuracy for any of the
considered cluster sizes. SHARE with trimmed mean and Krum both converge with cluster size 3 but
as cluster size increases, accuracy decreases and SHARE begins to diverge. This can be seen directly
from Lemma 2, since we set trimmed mean to filter q0 = (2/3) ∗ 60 = 40 of updates, a cluster size of
3 implies the algorithm is robust against q = 40/3 > 12 clients being malicious, hence the algorithm
converges to benign accuracy, increasing the cluster size decreases this tolerance threshold and hence
as shown in Figure (2c) may fail to converge. Further experiments on scaled sign-flip attacks, are
included in Appendix D due to space constraints.
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6.1.2 Impact of reclustering

Intuitively, increasing the number of reclustering rounds increases the expected number of clusters
without a Byzantine client. This hence increases the robustness of SHARE to higher fraction of
Byzantine clients with defenses like Zeno++ which can tolerate arbitrary levels of poisoning. We test
this hypothesis with several attack and clustering scenarios using sign-flipping attacks. In (a), we

(a) q = 6, m = 10, -10∆ (b) q = 30, m = 4, -10∆ (c) q = 6, m = 25, -100∆

Figure 3: Results of SHARE with Zeno++and different reclustering rounds R, Byzantine clients q,
cluster sizes m on CIFAR-10 with varying attack strengths (Any benign model update ∆ is scaled to
either −10∆ or −100∆). In (a),(b) we use n = 60 and for (c) we use n = 100.

use a relatively small cluster size and a low fraction of Byzantine clients, so 1 round is sufficient. In
(b), the fraction of Byzantine clients is high and in (c) the cluster size is large, which increases the
probability of a cluster containing a Byzantine client, so R > 1 helps converge to higher accuracies.

6.2 Shakespeare

We consider the first 60 speaking roles in the train set as our 60 clients. We train an RNN with 2
LSTM layers followed by 1 fully connected layer[17] and report top-1 accuracy on the testing set.

6.2.1 Empirical Evaluation

In Figure 4 we evaluate Byzantine tolerance of SHARE with Zeno++ under sign-flip attack (malicious
clients send an update negative to the benign one −∆) and scaled sign-flip attack (malicious clients
scale the update in addition to flipping the sign and hence send −10∆). A stronger attack like scaled
sign-flip breaks benign averaging and Zeno++ works well with any of the chosen cluster sizes.

(a) Zeno++, −10∆ (b) Zeno++, −∆

Figure 4: SHARE with Zeno++ defense and sign-flipping attack on Shakespeare.

7 Discussion and Conclusion
We have proposed SHARE, a framework for implementing Byzantine-robustness and privacy. The
key idea is hierarchical clustering. Cluster size is an important parameter that controls the trade-off
between privacy and robustness. Further, reclustering is an important step and can help decrease
variance and increase tolerance to the fraction of malicious clients when the defense can support
arbitrary failures like Zeno++. In future, we would like to explore other variations in client clustering,
especially in heterogeneous data settings. Further, we plan to work on stronger security guarantees
even with multiple reclustering rounds.
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