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Abstract

Federated learning (FL) provides an efficient training paradigm to jointly train a
global model leveraging data from distributed users. As the local training data
comes from different users who may not be trustworthy, several studies have shown
that FL is vulnerable to poisoning attacks where adversaries add malicious data
during training. On the other hand, to protect the privacy of users, FL is usually
trained in a differentially private way (DPFL). Given these properties of FL, in this
paper, we aim to ask: Can we leverage the innate privacy property of DPFL to

provide robustness certification against poisoning attacks? Can we further improve

the privacy of FL to improve such certification? To this end, we first investigate both
the user-level and instance-level privacy of FL, and propose novel randomization
mechanisms and analysis to achieve improved differential privacy. We then provide
two robustness certification criteria: certified prediction and certified attack cost

for DPFL on both levels. Theoretically, given different privacy properties of DPFL,
we prove their certified robustness under a bounded number of adversarial users or
instances. Empirically, we conduct extensive experiments to verify our theories
under different attacks on a range of datasets. We show that the global model
with a tighter privacy guarantee always provides stronger robustness certification
in terms of the certified attack cost, while may exhibit tradeoffs regarding the
certified prediction. We believe our work will inspire future research of developing
certifiably robust DPFL based on its inherent properties.

1 Introduction

Federated Learning (FL), which aims to jointly train a global model with distributed local data,
has been widely applied in different applications, such as finance [61], medical analysis [16], and
user behavior prediction [32, 60, 59]. However, the fact that the local data and training process
are entirely controlled by the local users who may be adversarial raises great concerns from both
security and privacy perspectives. In particular, recent studies show that FL is vulnerable to different
types of training-time attacks, such as model poisoning [10], backdoor attacks [6, 58, 55], and
label-flipping attacks [27]. On the other hand, the privacy concerns have motivated the need to
keep the raw data on local devices without sharing. However, sharing other indirect information
such as gradients or model updates as part of the FL training process can also leak sensitive user
information [63, 28, 11, 47]. As a result, in federated learning, a number of privacy-preserving
learning approaches are proposed to protect the privacy including differential privacy (DP) [22, 20, 23],
homomorphic encryption [15, 51, 30], and secure multiparty computation [9, 14]. Among these
privacy guarantees, differential privacy is one of the most widely used concepts due to its strong
information theoretic guarantees and relatively small systems overhead [41].
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To defend against poisoning attacks in FL, different defenses are proposed. For instance, various
robust aggregation methods [27, 50, 13, 24, 18, 62, 26, 40] identify and down-weight the malicious
updates during aggregation or estimate a true “center” of the received updates rather than taking a
weighted average. Other methods include robust federated training protocols (e.g., clipping [52],
noisy perturbation [52] and additional evaluation during training [4]) and post-training strategies (e.g.,
fine-tuning and pruning [57]) that repair the poisoned global model. However, these work mainly
focus on providing empirical robustness for FL while they have been shown vulnerable again to newly
proposed strong adaptive attackers [55, 58, 7, 25]. Thus, in this paper, we aim to develop certified

robustness guarantees for FL against different poisoning attacks. On the other hand, to ensure the
privacy of FL, differential privacy is guaranteed for the trained global models in FL. Given the DP
property of DPFL, we aim to ask: Can we leverage the innate privacy property of DPFL to provide

robustness certification against poisoning attacks for free? Can we further improve the privacy of FL

so as to improve its certified robustness?

Recent studies suggest that DP is inherently related with robustness of ML models. Intuitively, DP
is designed to protect the privacy of individual data, such that the output of an algorithm remains
essentially unchanged when one individual input point is modified. This means that the prediction of
a DP model will be less impacted by (poisoned) training data. Thus, differential privacy has been used
to provide both theoretical and empirical defenses against evasion attacks [39] and data poisoning
attacks [43, 34] on centralized ML models. It has also been used as an empirical defense against
backdoor attacks [31] in federated learning [6, 52], while no theoretical guarantee is provided. To
the best of our knowledge, despite of the wide application of differentially private federated learning
(DPFL), there is no work providing certified robustness for DPFL leveraging its privacy property.

In this paper, we aim to leverage the inherent privacy property of DPFL to provide the robustness
certification for FL against poisoning attacks for free. In particular, we propose two robustness
certification criteria for FL: certified prediction and certified attack cost under different attack
constraints. We consider both the user-level DP [3, 29, 46, 5, 42] which is widely guaranteed in
FL, and instance-level DP [44, 64] which is less explored in FL. Specifically, we prove that given
a FL trained model satisfying user-level DP, the model is certifiably robust against k adversarial
users based on our criteria. In addition, we propose InsDP-FedAvg to improve the instance-level DP
in FL. Similarly, we prove that FL with instance-level DP guarantee is certifiably robust against k
manipulated instances based on our criteria. Furthermore, we study the correlation between privacy
guarantee and the certified robustness of FL. For instance, on one hand, stronger privacy guarantees
higher attack cost; on the other hand, an overly strong privacy can hurt the certified prediction by
introducing too much noise in the training process, and thus the optimal certified prediction is often
achieved under a proper balance between privacy protection and utility loss.

Technical Contributions. This paper takes the first step to provide certified robustness in DPFL for
free against poisoning attacks. We make contributions on both theoretical and empirical fronts.

• We propose two criteria for the certified robustness of FL against poisoning attacks.
• Given a FL model satisfying the user-level DP, we prove that it is certifiably robust against arbitrary

poisoning attacks with k adversarial users based on our proposed robustness certification criteria.
• We propose InsDP-FedAvg algorithm to guarantee FL instance-level privacy. We prove that

instance-level DPFL is certifiably robust against k instances manipulation during training.
• We conduct extensive experiments on MNIST and CIFAR datasets to verify our theoretical results.

2 Related work

Differentially Private Federated Learning. Different approaches are proposed to guarantee the
user-level privacy for FL. Geyer et al. [29] and McMahan et al. [46] clip the norm of each local
update, add Gaussian noise on the summed update, and characterize its privacy budget via moment
accountant [2]. McMahan et al. [46] extends [29] to language models. In CpSGD [3], each user clips
and quantizes the model update, and adds noise drawn from Binomial distribution, achieving both
communication efficiency and DP. Bhowmick et al. [11] derive DP for FL via Renyi divergence [48]
and study its protection against data reconstruction attacks. Liang et al. [42] utilizes Laplacian
smoothing for each local update to enhance the model utility. Instead of using moment accountant to
track privacy budget over FL rounds as previous work, Asoodeh et al. [5] derives the DP parameters
by interpreting each round as a Markov kernel and quantify its impact on privacy parameters. All
these works only focus on providing user-level privacy, leaving its robustness property unexplored.
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In terms of instance-level privacy for FL, there are only a few work [44, 64]. Dopamine [44] provides
instance-level privacy guarantee when each user only performs one step of DP-SGD [2] at each FL
round. However, it cannot be applied to multi-step SGD for each user, thus it cannot be extended
to the general FL setting FedAvg [45]. Zhu et al. [64] privately aggregate the labels from users in a
voting scheme, and provide DP guarantees on both user level and instance level. However, it is also
not applicable to standard FL, since it does not allow aggregating the gradients or model updates.

Differential Privacy and Robustness. In standard (centralized) learning, to guarantee robustness
against evasion attacks, Pixel-DP [39] is proposed to certify that the model predictions do not depend
too much on the individual pixels of test image. The prediction can be stable as long as the `2 norm
of the perturbation is bounded. To certify the robustness against poisoning attacks, Ma et al. [43]
show that private learners are resistant to data poisoning and analyze the lower bound of attack cost
againt poisoning attacks for regression models. Here we certify the robustness in DPFL setting with
such lower bound as one of our certification criteria and additionally derive its upper bounds. Hong et

al. [34] show that the off-the-shelf mechanism DP-SGD [2], which clips per-sample gradients and
add Guassian noises during training, can serve as a defense against poisoning attacks empirically. In
federated learning, empirical work [6, 52] show that DPFL can mitigate backdoor attacks; however,
none of these work provides certified robustness guarantees in FL.

3 Preliminaries

We start by providing some background on differential privacy (DP) and federated learning (FL).

Differential Privacy. (✏, �)-DP is a current industry standard of privacy proposed by Dwork et

al. [22, 20, 23]. It bounds the change in output distribution caused by a small input difference for a
randomized algorithm. The following definition formally describes this privacy guarantee.
Definition 1 ((✏, �)-DP [23]). A randomized mechanism M : D ! ⇥ with domain D and range ⇥
satisfies (✏, �)-DP if for any pair of two adjacent datasets d, d

0
2 D, and for any possible (measurable)

output set E ✓ ⇥, it holds that Pr[M(d) 2 E]  e
✏ Pr [M (d0) 2 E] + �.

In Definition 1, when M is a training algorithm for ML model, domain D and range ⇥ represent
all possible training datasets and all possible trained models respectively. Group DP for (✏, �)-DP
mechanisms follows immediately from Definition 1 where the privacy guarantee drops with the size
of the group. Formally, it says:

Lemma 1 (Group DP). For mechanism M that satisfies (✏, �)-DP, it satisfies (k✏, 1�ek✏

1�e✏ �)-DP for

groups of size k. That is, for any d, d
0
2 D that differ by k individuals, and any E ✓ ⇥ it holds that

Pr[M(d) 2 E]  e
k✏ Pr [M (d0) 2 E] + 1�ek✏

1�e✏ �.

Federated Learning. FedAvg was introduced by Mcmahan et al. [45] for FL to train a shared global
model without direct access to training data of users. Specifically, given a FL system with N users, at
round t, the server sends the current global model wt�1 to users in the selected user set Ut, where
|Ut| = m = qN and q is the user sampling probability. Each selected user i 2 Ut locally updates
the model for E local epochs with its dataset Di and learning rate ⌘ to obtain a new local model.
Then, the user sends the local model updates �w

i
t to the server. Finally, the server aggregates over

the updates from all selected users into the new global model wt = wt�1 +
1
m

P
i2Ut

�w
i
t.

4 User-level Privacy and Certified Robustness for FL

4.1 User-level Privacy

Definition 1 leaves the definition of adjacent datasets flexible, which depends on applications. To
protect user-level privacy, adjacent datasets are defined as those differing by data from one user [46].
Definition 2 (User-level (✏, �)-DP). Let B,B

0
be two user sets with size N . Let D and D

0
be the

datasets that are the union of local training examples from all users in B and B
0

respectively. Then, D

and D
0

are adjacent if B and B
0

differ by one user. The mechanism M satisfies user-level (✏, �)-DP

if it meets Definition 1 with D and D
0

as adjacent datasets.

Following standard DPFL [29, 46], we introduce UserDP-FedAvg (Algorithm 1 in Appendix B)
to achieve user-level DP. At each round, the server first clips the update from each user with
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a threshold S such that its `2-sensitivity is upper bounded by S. Next, the server sums up the
updates, adds Gaussian noise sampled from N (0,�2

S
2), and takes the average, i.e., wt  wt�1 +

1
m

�P
i2Ut

Clip(�w
i
t, S) +N

�
0,�2

S
2
��

. We utilize the moment accountant [2] to compute the
DP guarantee. Compared to the standard composition theorem [23], the moment accounting method
provides tighter bounds for the repeated application of the Gaussian mechanism combined with
amplication-via-sampling. Given the user sampling probability q, noise level �, FL rounds T , and a
� > 0, UserDP-FedAvg satisfies (✏, �)-DP as below, which is a generalization of [2]. The proof of
proposition 1 follows the proof in [2] and is presented in the Appendix B.
Proposition 1 (UserDP-FedAvg Privacy Guarantee). There exist constants c1 and c2 so that given

user sampling probability q, and FL rounds T , for any " < c1q
2
T , if � � c2

q
p

T log(1/�)

✏ , the

randomized mechanism M in Algorithm 1 is (✏, �)-DP for any � > 0.

4.2 Certified Robustness of User-level DPFL against Poisoning Attacks

Threat Model. We consider the poisoning attacks against FL, where k adversarial users have
poisoned instances in local datasets during training, aiming to fool the trained DPFL global model.
Such attacks include backdoor attacks [31, 17] and label flipping attacks [12, 35]. The detailed
description of these attacks is deferred to Appendix C. Note that our robustness certification is attack-
agnostic under certain attack constraints (e.g., k), and we will verify our certification bounds with
different poisoning attacks in Section 5. Next, we propose two criteria for the robustness certification
in FL: certified prediction and certified attack cost.

Certified Prediction. Consider the classification task with C classes. We define the classification
scoring function f : (⇥,Rd) ! ⌥C which maps model parameters ✓ 2 ⇥ and an input data
x 2 Rd to a confidence vector f(✓, x), and fc(✓, x) 2 [0, 1] represents the confidence of class
c. We mainly focus on the confidence after normalization, i.e., f(✓, x) 2 ⌥C = {p 2 RC

�0 :
kpk1 = 1} in the probability simplex. Since DP mechanism produces a stochastic FL global
model ✓ = M(D) with randomized mechanism M, we define the expected scoring function

F : (✓,Rd)! ⌥C where Fc(M(D), x) = E[fc(M(D), x)] is the expected confidence for class c.
The expectation is taken over DP training randomness, e.g., random Gaussian noise and random
user subsampling. The corresponding prediction H : (✓,Rd)! [C] is defined by H(M(D), x) :=
argmaxc2[C] Fc(M(D), x), which is the top-1 class based on the expected prediction confidence.
We will prove that such prediction allows the robustness certification against poisoning attacks.

Following our threat model in Section 4.2 and DPFL training in Algorithm 1, we denote the trained
global model exposed to poisoning attacks by M(D0). When k = 1, D and D

0 are user-level adjacent
datasets according to Definition 2. Given that mechanism M satisfies user-level (✏, �)-DP, based on
the innate DP property, the distribution of the stochastic model M(D0) is “close” to the distribution
of M(D). Moreover, according to the post-processing property of DP [23], during testing, given
a test sample x, we would expect that the values of the expected confidence for each class c, i.e.,
Fc(M(D0), x) and Fc(M(D), x), to be close, and thus the returned most likely class should be the
same, i.e., H(M(D), x) = H(M(D0), x), indicating robust prediction against poisoning attacks.
Theorem 1 (Condition for Certified Prediction under One Adversarial User). Suppose a randomized

mechanism M satisfies user-level (✏, �)-DP. For two user sets B and B
0

that differ by one user,

D and D
0

are the corresponding training datasets. For a test input x, suppose A,B 2 [C] satisfy

A = argmaxc2[C] Fc(M(D), x) and B = argmaxc2[C]:c 6=A Fc(M(D), x), then if

FA(M(D), x) > e
2✏
FB(M(D), x) + (1 + e

✏)�, (1)
it is guaranteed that

H(M(D0), x) = H(M(D), x) = A.

When k > 1, we resort to group DP. According to Lemma 1, given mechanism M satisfying user-
level (✏, �)-DP, it also satisfies user-level (k✏, 1�ek✏

1�e✏ �)-DP for groups of size k. When k is smaller
than certain threshold, leveraging the group DP property, we would expect that the distribution of the
stochastic model M(D0) is not too far away from the distribution of M(D) such that they would
make the same prediction for a test sample with probabilistic guarantees.
Theorem 2 (Upper Bound of k for Certified Prediction). Suppose a randomized mechanism M satis-

fies user-level (✏, �)-DP. For two user sets B and B
0

that differ k users, D and D
0

are the correspond-

ing training datasets. For a test input x, suppose A,B 2 [C] satisfy A = argmaxc2[C] Fc(M(D), x)
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and B = argmaxc2[C]:c 6=A Fc(M(D), x), then H(M(D0), x) = H(M(D), x) = A, 8k < K
where K is the certified number of adversarial users:

K =
1

2✏
log

FA(M(D), x)(e✏ � 1) + �

FB(M(D), x)(e✏ � 1) + �
(2)

The proofs of Theorems 1 and 2 are omitted to Appendix E. Theorems 1 and 2 reflect a tradeoff
between privacy and certified prediction: i) in Theorem 1, if ✏ is large such that the RHS of Eq (1)
> 1, the robustness condition cannot be met since the expected confidence FA(M(D), x) 2 [0, 1].
However, to achieve small ✏, i.e., strong privacy, large noise is required during training, which would
hurt model utility and thus result in small confidence margin between the top two classes (e.g.,
FA(M(D), x) and FB(M(D), x)), making it hard to meet the robustness condition. ii) In Theorem 2
if we fix FA(M(D), x), FB(M(D), x), smaller ✏ of FL can certify larger K. However, smaller ✏ also
induces smaller confidence margin, thus reducing K instead. As a result, properly choosing ✏ would
help to certify a large K.

Certified Attack Cost. In addition to the certified prediction, we define the attack cost for attacker
C : ⇥ ! R which quantifies the difference between the poisoned model and the attack goal. In
general, attacker aims to minimize the expected attack cost J(D) := E[C(M(D))], where the
expectation is taken over the randomness of DP training. The cost function can be instantiated
according to the concrete attack goal in different types of poisoning attacks, and we provide some
examples below. Given a global FL model satisfying user-level (✏, �)-DP, we will prove the lower
bound of the attack cost J(D0) when manipulating up to the data of k users. Higher lower bound of
the attack cost indicates more certifiably robust global model.
Example 1. (Backdoor attack [31, 17, 6]) C(✓) = 1

n

Pn
i=1 l(✓, z

⇤
i ), where z

⇤
i = (xi + �x, y

⇤), �x
is the backdoor pattern, y

⇤
is the target adversarial label. Minimizing J(D0) drives the prediction on

any test data with the backdoor pattern �x to the target label y
⇤
.

Example 2. (Label Flipping attack [12, 35]) C(✓) = 1
n

Pn
i=1 l(✓, z

⇤
i ), where z

⇤
i = (xi, y

⇤) and y
⇤

is the target adversarial label. Minimizing J(D0) drives the prediction on test data xi to the target

label y
⇤
.

Example 3. (Parameter-Targeting attack [43]) C(✓) = 1
2k✓�✓

?
k
2
, where ✓

?
is the target adversarial

model. Minimizing J(D0) drives the poisoned model to be close to the target model.

Theorem 3 (Attack Cost with k Attackers). Suppose a randomized mechanism M satisfies user-level

(✏, �)-DP. For two user sets B and B
0

that differ k users, D and D
0

are the corresponding training

datasets. Let J(D) be the expected attack cost where |C(·)|  C̄. Then,

min{ek✏J(D) +
ek✏ � 1
e✏ � 1

�C̄, C̄} � J(D0) � max{e�k✏J(D)� 1� e�k✏

e✏ � 1
�C̄, 0}, if C(·) � 0

min{e�k✏J(D) +
1� e�k✏

e✏ � 1
�C̄, 0} � J(D0) � max{ek✏J(D)� ek✏ � 1

e✏ � 1
�C̄,�C̄}, if C(·)  0

(3)

The proof is omitted to Appendix E. Theorem 3 provides the upper bounds and lower bounds for
attack cost J(D0). The lower bounds show that to what extent the attack can reduce J(D0) by
manipulating up to k users, i.e., how successful the attack can be. The lower bounds depend on the
attack cost on clean model J(D), k and ✏. When J(D) is higher, the DPFL model under poisoning
attacks is more robust because the lower bounds are accordingly higher; a tighter privacy guarantee,
i.e., smaller ✏, can also lead to higher robustness certification as it increases the lower bounds; with
larger k, the attacker ability grows and thus lead to lower possible J(D0). The upper bounds show
the least adversarial effect brought by k attackers, i.e., how vulnerable the DPFL model is under the
optimistic case (e.g., the backdoor pattern is less distinguishable).

Leveraging the lower bounds in Theorem 3, we can lower-bound the minimum number of attackers
required to reduce the attack cost to certain level associated with hyperparameter ⌧ in Corollary 1.
Corollary 1 (Lower Bound of k Given ⌧ ). Suppose a randomized mechanism M satisfies user-

level (✏, �)-DP. Let attack cost function be C, the expected attack cost be J(·). In order to achieve

J(D0)  1
⌧ J(D) for ⌧ � 1 when 0  C(·)  C̄, or achieve J(D0)  ⌧J(D) for 1  ⌧  �

C̄
J(D)

when �C̄  C(·)  0, the number of adversarial users should satisfy:

k �
1

✏
log

(e✏ � 1) J(D)⌧ + C̄�⌧

(e✏ � 1) J(D) + C̄�⌧
or k �

1

✏
log

(e✏ � 1) J(D)⌧ � C̄�

(e✏ � 1) J(D)� C̄�
respectively. (4)
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The proof is omitted to Appendix E. Corollary 1 shows that stronger privacy guarantee (i.e., smaller
✏) requires more attackers to achieve the same effectiveness of attack, indicating higher robustness.

We refer the readers to Appendix A for instance-level privacy definition, our proposed algorithms,
corresponding privacy analysis and certified robustness in FL. The comparison with existing certified
prediction methods in centralized setting are also deferred to Appendix A.

5 Experiments

We present evaluations for robustness certifications, expecially Thm. 2, 3 and Cor. 1. We find that 1)
there is a tradeoff between certified prediction and privacy on certain datasets; 2) a tighter privacy
guarantee always provides stronger certified robustness in terms of the certified attack cost; 3) our
lower bounds of certified attack cost are generally tight when k is small. When k is large, they are
tight under strong attacks (e.g., large local poisoning ratio ↵). Stronger attacks or tighter certification
are requried to further tighten the gap between the emprical robustness and theoretical bounds.

Data and Model. We evaluate our robustness certification results with two datasets: MNIST [38] and
CIFAR-10 [37]. For each dataset, we use corresponding standard CNN architectures in the differential
privacy library [1] of PyTorch [49]. Following previous work on DP ML [36, 43] and backdoor
attacks [53, 56] which evaluate with two classes, we focus on binary classification for MNIST (digit
0 and 1) and CIFAR-10 (airplane and bird), and defer the 10-class results to Appendix D. We train
FL model following Algorithm 1 for user-level privacy and Algorithm 3 for instance-level privacy.
We refer the readers to Appendix D for details about the datasets, networks, parameter setups.

Poisoning Attacks. We evaluate several state-of-the-art poisoning attacks against the proposed
UserDP-FedAvg and InsDP-FedAvg. We first consider backdoor attacks (BKD) [6] and label
flipping attacks (LF) [27]. For InsDP-FedAvg, we consider the worst case where k backdoored or
lable-flipped instances are fallen into the dataset of one user. For UserDP-FedAvg, we additionally
evaluate distributed backdoor attack (DBA) [58], which is claimed to be a more stealthy backdoor
attack against FL. Moreover, we consider BKD, LF and DBA via model replacement approach [6]
where k attackers train the local models using local datasets with ↵ fraction of poisoned instances,
and scale the malicious updates with hyperparameter �, i.e., �w

i
t  ��w

i
t, before sending them

to the sever. This way, the malicious updates would have a stronger impact on the FL model. Note
that even when attackers perform scaling, after server clipping, the sensitivity of updates is still
upper-bounded by the clipping threshold S. So the privacy guarantee in Proposition 1 still holds
under poisoning attacks via model replacement. Detailed attack setups are presented in Appendix D.

Evaluation Metrics and Setup. We consider two evaluation metrics based on our robustness
certification criteria. The first metric is certified accuracy, which is the fraction of the test set for
which the poisoned FL model makes correct and consistent predictions compared with the clean
FL model. Given a test set of size n, for i-th test sample, the ground truth label is yi, the output
prediction is ci , and the certified number of adversarial users/instances is Ki. We calculate the
certified accuracy at k as 1

n

Pn
i=1 1{ci = yi and Ki � k}. The second metric is the lower bound of

attack cost in Theorem 3: J(D0) = max{e�k✏
J(B)� 1�e�k✏

e✏�1 �C̄, 0}. We evaluate the tightness of
J(D0) by comparing it with empirical attack cost J(D0). To quantify the robustness, we evaluate the
expected class confidence Fc(M(D), x) for class c via Monte-Carlo sampling. We run the private
FL algorithms for M =1000 times, with class confidence f

s
c = fc(M(D), x) for each time. We

compute its expectation to estimate Fc(M(D), x) ⇡ 1
M

PM
s=1 f

s
c and use it to evaluate Theorem 2.

In addition, we use Hoeffding’s inequality [33] to calibrates the empirical estimation with confidence
level parameter  , and results are deferred to Appendix D.6. In terms of the attack cost, we use
Example 1, 2 as the definitions of cost function C for backdoor attacks and label flipping attacks
respectively. We follow similar protocol to estimate J(D0) for Theorem 3 and Corollary 1.

5.1 Robustness Evaluation of User-level DPFL

Certified Prediction. Figure 1(a)(b) present the user-level certified accuracy under different ✏ by
training DPFL models with different noise scale �. In Figure 1(a), we observe that in MNIST the
largest k can be certified when ✏ is around 0.6298, which follows the tradeoff between ✏ and certified
accuracy as we discussed in Section 4.2. Advanced DP protocols that requires less noise while
achieving similar level of privacy are favored to improve the privacy, utility, and certified accuracy
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simultaneously. On the other hand, in Figure 1(b), larger k can always be certified with smaller ✏,
which indicates that the optimal ✏ for K might be below 0.2445 for complex data such as CIFAR-10.

Figure 1: Certified accuracy of FL satisfying user-level DP (a,b), and instance-level DP (c,d).

Certified Attack Cost. In order to evaluate Theorem 3 and characterize the tightness of our theoret-
ical lower bound J(D0), we compare it with the empirical attack cost J(D0) under different local
poison fraction ↵ , attack methods and scale factor � in Figure 2. Note that when k = 0, the model is
benign so the empirical cost equals to the certified one. We find that 1) when k increases, the attack
ability grows, and both the empirical attack cost and theoretical lower bound decreases. 2) In Figure 2
row 1, given the same k, higher ↵, i.e., poisoning more local instances for each attacker, achieves a
stronger attack, under which lower empirical J(D) can be achieved and is more close to the certified
lower bound. This indicates that the lower bound appears tighter when the poisoning attack is stronger.
3) In Figure 2 row 2, we fix ↵ = 100% and evaluate UserDP-FedAvg under different � and attack
methods. It turns out that DP serves as a strong defense empirically for FL, given that J(D) did
not vary much under different �(1, 50, 100) and different attack methods (BKD, DBA, LF). This is
because the clipping operation restricts the magnitude of malicious updates, rendering the model
replacement ineffective; the Gaussian noise perturbs the malicious updates and makes the DPFL
model stable, and thus the FL model is less likely to memorize the poisoning instances. 4) In both
rows, the lower bounds are tight when k is small. When k is large, there remains a gap between our
theoretical lower bounds and empirical attack costs under different attacks, which will inspire more
effective poisoning attacks or tighter robustness certification. We refer the readers to Appendix D.4
for evaluation of certified attack cost under different ✏ in user-level DPFL.

Figure 2: Certified attack cost of user-level DPFL given different k, under attacks with different ↵ (Row 1) or
different � (Row 2).

The robustness evaluation of instance-level DPFL is deferred to Appendix D.5.

6 Conclusion

In this paper, we present the first work on deriving certified robustness in DPFL for free against
poisoning attacks. We propose two robustness certification criteria, based on which we prove that a FL
model satisfying user-level DP is certifiably robust against k adversarial users. Moreover, we propose
a novel algorithm for instance-level DPFL, and prove its certified robustness against k adversarial
instances. Our theoretical analysis characterizes the inherent relation between certified robustness
and differential privacy of FL on both user and instance levels, which are empirically verified with
extensive experiments. Our results can be used to improve the trustworthiness of DPFL.
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Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

[50] Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. Robust aggregation for federated
learning. arXiv preprint arXiv:1912.13445, 2019.

10



[51] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz Koushanfar. Deepsecure: Scalable provably-
secure deep learning. In Proceedings of the 55th Annual Design Automation Conference, pages
1–6, 2018.

[52] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H Brendan McMahan. Can you really
backdoor federated learning? arXiv preprint arXiv:1911.07963, 2019.

[53] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[54] Stephen Tu. Lecture 20: Introduction to differential privacy.

[55] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh Agarwal,
Jy-yong Sohn, Kangwook Lee, and Dimitris Papailiopoulos. Attack of the tails: Yes, you really
can backdoor federated learning. NeurIPS, 2020.

[56] Maurice Weber, Xiaojun Xu, Bojan Karlas, Ce Zhang, and Bo Li. Rab: Provable robustness
against backdoor attacks. arXiv preprint arXiv:2003.08904, 2020.

[57] Chen Wu, Xian Yang, Sencun Zhu, and Prasenjit Mitra. Mitigating backdoor attacks in federated
learning. arXiv preprint arXiv:2011.01767, 2020.

[58] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. Dba: Distributed backdoor attacks against
federated learning. In International Conference on Learning Representations, 2019.

[59] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept
and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):12,
2019.

[60] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong, Daniel
Ramage, and Françoise Beaufays. Applied federated learning: Improving google keyboard
query suggestions. arXiv preprint arXiv:1812.02903, 2018.

[61] Wensi Yang, Yuhang Zhang, Kejiang Ye, Li Li, and Cheng-Zhong Xu. Ffd: a federated learning
based method for credit card fraud detection. In International Conference on Big Data, pages
18–32. Springer, 2019.

[62] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust distributed
learning: Towards optimal statistical rates. In International Conference on Machine Learning,
pages 5650–5659. PMLR, 2018.

[63] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In H. Wallach,
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