
Appendix

The Appendix is organized as follows:

• Appendix A provides the instance-level DP definition, corresponding algorithms, the privacy
analysis and robustness certification for FL.

• Appendix B provides the DPFL algorithms on both user and instance levels, and the proofs for
corresponding privacy guarantees.

• Appendix C specifies our threat models.
• Appendix D provides more details on experimental setups for training and evaluation, certified

attack cost of user-level DPFL under different ✏, robustness evaluation of instance-level DPFL, the
addition experimental results on certified accuracy with confidence level, and robustness evaluation
on 10-class classification.

• Appendix E provides the proofs for the certified robustness related analysis, including Lemma 1,
Theorem 1, 2, 3, 5 and Corollary 1.

A Instance-level Privacy and Certified Robustness for FL

A.1 Instance-level Privacy

In this section, we introduce the instance-level DP definition, corresponding algorithm, and the
privacy analysis for FL. When DP is used to protect the privacy of individual instance, the trained
stochastic FL model should not differ much if one instance is modified. Hence, the adjacent datasets
in instance-level DP is defined as those differing by one instance.
Definition 3 (Instance-level (✏, �)-DP). Let D be the dataset that is the union of local training

examples from all users. Then, D and D
0

are adjacent if they differ by one instance. The mechanism

M is instance-level (✏, �)-DP if it meets Definition 1 with D and D
0

as adjacent datasets.

Dopamine [44] provides the first instance-level privacy guarantee under FedSGD [45]. However, it
has two limitations. First, its privacy bound is loose. Although FedSGD performs both user and batch
sampling during training, Dopamine ignores the privacy gain provided by random user sampling. In
this section, we improve the privacy guarantee under FedSGD with privacy amplification via user
sampling [8, 2]. This improvement leads to algorithm InsDP-FedSGD, to achieve tighter privacy
analysis. We defer the algorithm (Algorithm 2) and its privacy guarantee to Appendix B.

Besides the loose privacy bound, Dopamine [44] only allows users to perform one step of DP-

SGD [2] at each FL round. This restriction limits the efficiency of the algorithm and increases the
communication overhead. In practice, users in FL are typically allowed to update their local models
for many steps before submitting updates to reduce the communication cost. To solve this problem,
we further improve InsDP-FedSGD to support multiple local steps at each round. Specifically,
we propose a novel instance-level DPFL algorithm InsDP-FedAvg (Algorithm 3 in Appendix B)
allowing users to train multiple local SGD steps before submitting the updates. In InsDP-FedAvg,
each user i performs local DP-SGD so that the local training mechanism M

i satisfies instance-level
DP. Then, the server aggregates the updates. We prove that the global mechanism M preserves
instance-level DP using DP parallel composition theorem [21] and moment accountant [2].

Algorithm 3 formally presents the InsDP-FedAvg algorithm and the calculation of its privacy budget
✏. Specifically, at first, local privacy cost ✏i0 is initialized as 0 before FL training. At round t, if user i
is not selected, its local privacy cost is kept unchanged ✏it  ✏

i
t�1. Otherwise user i updates local

model by running DP-SGD for V local steps with batch sampling probability p, noise level � and
clipping threshold S, and ✏it is accumulated upon ✏it�1 via its local moment accountant. Next, the
server aggregates the updates from selected users, and leverage {✏it}i2[N ] and the parallel composition
in Theorem 4 to calculate the global privacy cost ✏t. After T rounds, the mechanism M that outputs
the FL global model in Algorithm 3 is instance-level (✏T , �)-DP.
Theorem 4 (InsDP-FedAvg Privacy Guarantee). In Algorithm 3, at round t, suppose local mecha-

nism M
i

satisfies (✏it, �)-DP, then the global mechanism M satisfies
�
maxi2[N ] ✏

i
t, �
�
-DP.

The idea behind Theorem 4 is that when D
0 and D differ one instance, the modified instance only

fall into one local dataset, thus parallel composition theorem [21] can be applied. Then the privacy
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guarantee considers the worst-case, which is provided by taking the maximum local privacy cost
across all the users. The detailed proof is omitted to Appendix B.

A.2 Certified Robustness of Instance-level DPFL against Poisoning Attacks

Threat Model. We consider poisoning attacks where there are k poisoned instances. These instances
could be controlled by the same or multiple adversarial users. Our robustness certification is agnostic
to the attack methods as long as the number of poisoned instances is constrained.

According to the group DP property (Lemma 1) and the post-processing property for FL model with
instance-level (✏, �)-DP, we prove that our robust certification results proposed for user-level DP are
also applicable to instance-level DP. Below is the formal theorem (proof is omitted to Appendix E).
Theorem 5. Suppose a randomized mechanism M satisfies instance-level (✏, �)-DP, D and D

0
differ

by k instances. The results in Theorems 1, 2, 3 and Corollary 1 hold for M, D and D
0
.

Comparison with existing certified prediction methods in centralized setting. The form of The-
orem 1 is similar with the robustness condition against test-time attack in Proposition 1 of Lecuyer et

al. [39]. This is because the derived robustness conditions are both rooted in the DP properties,
but ours focus on the robustness against training-time attacks in FL, which is more challenging
considering the model dynamics. Our Theorem 1 is also different from previous certifiably robust
centralized learning against backdoor [56] and label flipping [19]. First, our randomness comes from
the inherent training randomness of user/instance-level (✏, �)-DP, e.g., user subsampling and Gaussian
noise; while in [56, 19] the randomness only comes from the explicitly added training-time noises.
Second, our Theorem 1, 2 hold no matter how ✏ is achieved, which means that we can add different
types of noise, leverage different subsampling strategies or even different FL training protocols to
achieve user/instance-level ✏. However, in [56, 19] different certifications require different types
of noise (Laplacian, Gaussian, etc.). Additionally, DP is suitable to characterize the robustness
against poisoning since off-the-shelf DP composition theorems track privacy cost ✏, which naturally
captures the training dynamics of ML model parameters and thus provides robustness guarantees in a
probabilistic manner without additional assumptions. Otherwise one may need to track the deviations
of model parameters by analyzing SGD over training, which is theoretically knotty and often requires
strong assumptions on Lipschitz continuity, smoothness or convexity for the trained models.

B Differentially Private Federated Learning

B.1 UserDP-FedAvg

Algorithm 1: UserDP-FedAvg.

Input: Initial model w0, user sampling probability q, privacy
parameter �, clipping threshold S, noise level �, local
datasets D1, ..., DN , local epochs E, learning rate ⌘.

Output: FL model wT and privacy cost ✏
Server executes:

for each round t = 1 to T do

m max(q ·N, 1);
Ut  (random subset of m users);
for each user i 2 Ut in parallel do

�w
i
t  UserUpdate(i, wt�1) ;

wt  wt�1 +
1
m

�P
i2Ut

Clip(�w
i
t, S)+N

�
0,�2

S
2
��

;
M.accum priv spending(�, q, �) ;

✏ = M.get privacy spent() ;
return wT , ✏

Procedure UserUpdate(i, wt�1)
w  wt�1 ;
for local epoch e = 1 to E do

for batch b 2 local dataset Di do

w  w � ⌘rl(w; b)

�w
i
t  w � wt�1 ;

return �w
i
t

Procedure Clip(�, S)

return �/max
⇣
1,

k�k2
S

⌘

In Algorithm 1, M.accum priv spending() and M.get privacy spent() are the calls on the moments
accountant M refer to the API of Abadi et al. [2].

The privacy guarantee for Algorithm 1 is a generalization of [2]. We recall Proposition 1.
Proposition 1 (UserDP-FedAvg Privacy Guarantee). There exist constants c1 and c2 so that given

user sampling probability q, and FL rounds T , for any " < c1q
2
T , if � � c2

q
p

T log(1/�)

✏ , the

randomized mechanism M in Algorithm 1 is (✏, �)-DP for any � > 0.
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Proof. The proof follows the proof of Theorem 1 in [2], while the notations have slightly different
meanings under FL settings. In Proposition 1, we use q to represent user-level sampling probability
and T to represent FL training rounds.

Discussion Tian et al. [41] divide the user-level privacy into global privacy [29, 46] and local
privacy [3]. In both local and global privacy, the norm of each update is clipped. The difference lies
in that the noise is added on the aggregated model updates in global privacy because a trusted server
is assumed, while the noise is added on each local update in local privacy because it assumes that the
central server might be malicious. Algorithm 1 belongs to global privacy.

B.2 InsDP-FedSGD

Algorithm 2: InsDP-FedSGD.
Input: Initial model w0, user sampling probability q,

privacy parameter �, local clipping threshold S,
local noise level �, local datasets D1, ..., DN ,
learning rate ⌘, batch sampling probability p.

Output: FL model wT and privacy cost ✏
Server executes:

for each round t = 1 to T do

m max(q ·N, 1);
Ut  (random subset of m clients);
for each user i 2 Ut in parallel do

�w
i
t  UserUpdate(i, wt�1) ;

wt  wt�1 +
1
m

P
i2Ut

�w
i
t ;

M.accum priv spending(
p
m�, pq, �)

✏ = M.get privacy spent() ;
return wT , ✏

Procedure UserUpdate(i, wt�1)
w  wt�1 ;
b
i
t  (uniformly sample a batch from Di with prob-
ability p = L/|Di|);

for each xj 2 b
i
t do

g(xj) rl(w;xj);
ḡ(xj) Clip(g(xj), S) ;

eg  1
L

⇣P
j ḡ(xj) +N

�
0,�2

S
2
�⌘

;
w  w � ⌘eg ;
�w

i
t  w � wt�1 ;

return �w
i
t

Procedure Clip(�, S)

return �/max
⇣
1,

k�k2
S

⌘

Under FedSGD, when each local model performs one step of DP-SGD [2], the randomized mechanism
M that outputs the global model preserves the instance-level DP. We can regard the one-step update
for the global model in Algorithm 2 as:

wt  wt�1 �
1

m

X

i2Ut

⌘

L

0

@
X

xj2bit

ḡ(xj) +N
�
0,�2

S
2
�
1

A (5)

Proposition 2 (InsDP-FedSGD Privacy Guarantee). There exist constants c1 and c2 so that given

batch sampling probability p, and user sampling probability q, the number of selected users each

round m, and FL rounds T , for any " < c1(pq)2T , if � � c2
pq
p

T log(1/�)

✏
p
m

, the randomized

mechanism M in Algorithm 2 is (✏, �)-DP for any � > 0.

Proof. i) In instance-level DP, we consider the sampling probability of each instance under the com-
bination of user-level sampling and batch-level sampling. Since the user-level sampling probability
is q and the batch-level sampling probablity is p, each instance is sampled with probability pq. ii)
Additionally, since the sensitivity of instance-wise gradient w.r.t one instance is S, after local gradient
descent and server FL aggregation, the equivalent sensitivity of global model w.r.t one instance
is S

0 = ⌘S
Lm according to Eq (5). iii) Moreover, since the local noise is ni ⇠ N (0,�2

S
2) , then

the “virtual” global noise is n = ⌘
mL

P
i2Ut

ni according to Eq (5), so n ⇠ N (0, ⌘2�2S2

mL2 ). Let
⌘2�2S2

mL2 = �
02
S
02 such that n ⇠ N (0,�02

S
02). Because S

0 = ⌘S
Lm , the equivalent global noise level

is �02 = �
2
m, i.e., �0 = �

p
m.

In Proposition 2, we use pq to represent instance-level sampling probability, T to represent FL
training rounds, �

p
m to represent the equivalent global noise level. The rest of the proof follows the

proof of Theorem 1 in [2].
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B.3 InsDP-FedAvg

Algorithm 3: InsDP-FedAvg.

Input: Initial model w0, user sampling probability q,
privacy parameter �, local clipping threshold S,
local noise level �, local datasets D1, ..., DN ,
local steps V , learning rate ⌘, batch sampling
probability p.

Output: FL model wT and privacy cost ✏
Server executes:

for each round t = 1 to T do

m max(q ·N, 1);
Ut  (random subset of m users);
for each user i 2 Ut in parallel do

�w
i
t, ✏

i
t  UserUpdate(i, wt�1) ;

for each user i /2 Ut do

✏
i
t  ✏

i
t�1 ;

wt  wt�1 +
1
m

P
i2Ut

�w
i
t ;

✏t = M.parallel composition({✏it}i2[N ])

✏ = ✏T ;

return wT , ✏

Procedure UserUpdate(i, wt�1)
w  wt�1 ;
for each local step v = 1 to V do

b  (uniformly sample a batch from Di with
probability p = L/|Di|);

for each xj 2 b do

g(xj) rl(w;xj);
ḡ(xj) Clip(g(xj), S) ;

eg  1
L (
P

j ḡ(xj) +N
�
0,�2

S
2
�
);

w  w � ⌘eg ;
M

i
.accum priv spending(�, p, �) ;

✏
i
t = M

i
.get privacy spent() ;

�w
i
t  w � wt�1 ;

return �w
i
t, ✏

i
t

Procedure Clip(�, S)

return �/max
⇣
1,

k�k2
S

⌘

Lemma 2 (InsDP-FedAvg Privacy Guarantee when T = 1). In Algorithm 3, when T = 1, suppose

local mechanism M
i

satisfies (✏i, �)-DP, then global mechanism M satisfies (maxi2[N ] ✏
i
, �)-DP.

Proof. We can regard federated learning as partitioning a dataset D into N disjoint subsets
{D1, D2, . . . , DN}. N mechanisms {M

1
, . . . ,M

N
} are operated on these N parts separately

and each M
i satisfies its own ✏i-DP for i 2 [1, N ]. Note that if i-th user is not selected , ✏i = 0

because local dataset Di is not accessed and there is no privacy cost. Without loss of generality,
we assume the modified data sample x

0 (x ! x
0 causes D ! D

0) is in the local dataset of k-th
client Dk. Let D,D

0 be two neighboring datasets (Dk, D
0
k are also two neighboring datasets). M

is randomized mechanism that outputs the global model, and M
i is the randomized mechanism

that outputs the local model update �w
i. Suppose w0 is the initialized and deterministic global

model, and {z1, . . . , zN} are randomized local updates. We have a sequence of computations
{z1 = M

1(D1), z2 = M
2(D2; z1), z3 = M

3(D3; z1, z2) . . .} and z = M(D) = w0 +
PN

i=1 zi.
Note that if i-th user is not selected , zi = 0. According to the parallel composition [54], we have

Pr[M(D) = z]

= Pr[M1(D1) = z1] Pr[M
2(D2; z1) = z2] . . .Pr[M

N (DN ; z1, . . . , zN�1) = zN ]

 exp(✏k) Pr[Mk(D0
k; z1, . . . , zk�1) = zk]

Y

i 6=k

Pr[Mi(Di; z1, . . . , zi�1) = zi]

= exp(✏k) Pr[M(D0) = z]

So M satisfies ✏k-DP when the modified data sample lies in the subset Dk. Consider the worst case
of where the modified data sample could fall in, we know that M satisfies (maxi2[N ] ✏

i)-DP.

We recall Theorem 4.
Theorem 4 (InsDP-FedAvg Privacy Guarantee). In Algorithm 3, at round t, suppose local mecha-

nism M
i

satisfies (✏it, �)-DP, then the global mechanism M satisfies
�
maxi2[N ] ✏

i
t, �
�
-DP.

Proof. Again, without loss of generality, we assume the modified data sample x
0 (x ! x

0 causes
D ! D

0) is in the local dataset of k-th user Dk. We first consider the case when all users are
selected. At each round t, N mechanisms are operated on N disjoint parts and each M

i
t satisfies

own ✏
i-DP where ✏i is the privacy cost for accessing the local dataset Di for one round (not

accumulating over previous rounds). Let D,D
0 be two neighboring datasets (Dk, D

0
k are also two

neighboring datasets). Suppose z0 = Mt�1(D) is the aggregated randomized global model at
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round t � 1, and {z1, . . . , zN} are the randomized local updates at round t, we have a sequence
of computations {z1 = M

1
t (D1; z0), z2 = M

2
t (D2; z0, z1), z3 = M

3
t (D3; z0, z1, z2) . . .} and

z = Mt(D) = z0 +
PN

i zi. We first consider the sequential composition [23] to accumulate the
privacy cost over FL rounds. According to parallel composition, we have

Pr[Mt(D) = z]

= Pr[Mt�1(D) = z0]
NY

i=1

Pr[Mi
t(Di; z0, z1, . . . , zi�1) = zi]

= Pr[Mt�1(D) = z0] Pr[M
k
t (Dk; z0, z1, . . . , zk�1) = zk]

Y

i 6=k

Pr[Mi
t(Di; z0, z1, . . . , zi�1) = zi]

 exp(✏t�1) Pr[Mt�1(D
0) = z0] exp(✏

k) Pr[Mk
t (D

0
k; z0, z1, . . . , zk�1) = zk]

Y

i 6=k

Pr[Mi
t(Di; z0, z1, . . . , zi�1) = zi]

= exp(✏t�1 + ✏
k) Pr[Mt(D

0) = z]

Therefore, Mt satisfies ✏t-DP, where ✏t = ✏t�1 + ✏
k. Because the modified data sample always lies

in Dk over t rounds and ✏0 = 0, we can have ✏t = t✏
k, which means that the privacy guarantee of

global mechanism Mt is only determined by the local mechanism of k-th user over t rounds.

Moreover, moment accountant [2] is known to reduce the privacy cost from O(t) to O(
p
t). We can

use the more advanced composition, i.e., moment accountant, instead of the sequential composition,
to accumulate the privacy cost for local mechanism M

k over t FL rounds. In addition, we consider
user subsampling. As described in Algorithm 3, if the user i is not selected at round t, then its local
privacy cost is kept unchanged at this round.

Take the worst case of where x
0 could lie in, at round t, M satisfies ✏t-DP, where ✏t = maxi2[N ] ✏

i
t,

local mechanism M
i satisfies ✏it-DP, and the local privacy cost ✏it is accumulated via local moment

accountant in i-th user over t rounds.

C Threat Models

We consider targeted poisoning attacks of two types. In backdoor attacks [31, 17], the goal is to
embed a backdoor pattern (i.e., a trigger) during training such that any test input with such pattern
will be mis-classified as the target. In label flipping attacks [12, 35], the labels of clean training
examples from one source class are flipped to the target class while the features of the data are kept
unchanged. In FL, the purpose of backdoor attacks is to manipulate local models with backdoored
local data, so that the global model would behave normally on untampered data samples while
achieving high attack success rate on clean data [6]. Given the same purpose, distributed backdoor

attack (DBA) [58] decomposes the same backdoor pattern to several smaller ones and embedds them
to different local training sets for different adversarial users. The goal of label flipping attack against
FL is to manipulate local datasets with flipped labels such that the global model will mis-classify
the test data in the source class as the target class. The model replacement [6] is a more powerful
approach to perform the above attacks, where the attackers first train the local models using the
poisoned datasets and then scale the malicious updates before sending them to the server. This way,
the attacker’s updates would have a stronger impact on the FL model. We use the model replacement
method to perform poisoning attacks and study the effectiveness of DPFL.

For UserDP-FedAvg, we consider backdoor, distributed backdoor and label flipping attacks via the
model replacement approach. Next, we formalize the attack process and introduce the notations.
Suppose the attacker controlling k adversarial users, i.e., there are k attackers out of N users. Let
B be the original user set of N benign users, and B

0 be the user set that contains k attackers. Let
D := {D1, D2, . . . , DN} be the union of original benign local datasets in all users. For a data
sample z

i
j := {x

i
j , y

i
j} in Di, we denote its backdoored version as z

0i
j := {x

i
j + �x, y

⇤
}, where

�x is the backdoor pattern, y⇤ is the targeted label; the DBA version as z
0i
j := {x

i
j + �

i
x, y

⇤
},

where �ix is the distributed backdoor pattern for attacker i; the label-flipped version as z
0i
j :=

{x
i
j , y

⇤
}. Note that the composition of all DBA patterns is equivalent to the backdoor pattern, i.e.,
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Algorithm Dataset #training samples N m E V batch size ⌘ S � C̄

UserDP-FedAvg MNIST 12665 200 20 10 / 60 0.02 0.7 0.0029 0.5
UserDP-FedAvg CIFAR-10 10000 200 40 5 / 50 0.05 1 0.0029 0.2
InsDP-FedAvg MNIST 12665 10 10 / 25 60 0.02 0.7 0.00001 0.5
InsDP-FedAvg CIFAR-10 10000 10 10 / 100 50 0.05 1 0.00001 2

Table 1: Dataset description and parameters

Pk
i=1 �

i
x = �x. We assume attacker i has ↵i fraction of poisoned samples in its local dataset D0

i. Let
D

0 := {D
0
1, . . . , D

0
k�1, D

0
k, Dk+1, . . . , DN} be the union of local datasets under k attackers. The

adversarial user i performs model replacement by scaling the model update with hyperparameter �
before submitting it to the server, i.e., �w

i
t  ��w

k
t .

For InsDP-FedAvg, we consider both backdoor and label flipping attacks. Since distributed backdoor
and model replacement attack are proposed for adversarial users rather than adversairal instances, we
do not consider them for instantce-level DPFL. There are k backdoored or label-flipped instances
{z

0
1, z

0
2, . . . , z

0
k}, which could be controlled by the same or multiple users.

D Experimental Details and Additional Results

D.1 Datasets and Models

We evaluate our robustness certification results with two datasets: MNIST [38] and CIFAR-10 [37].
For each dataset, we use corresponding standard CNN architectures in the differential privacy
library [1] of PyTorch [49].

MNIST: We study an image classification problem of handwritten digits in MNIST. It is a dataset
of 70000 28x28 pixel images of digits in 10 classes, split into a train set of 60000 images and a
test set of 10000 images. Except Section D.7, we consider binary classification on classes 0 and 1,
making our train set contain 12665 samples, and the test set 2115 samples. The model consists of
two Conv-ReLu-MaxPooling layers and two linear layers.

CIFAR-10: We study image classification of vehicles and animals in CIFAR-10. This is a harder
dataset than MNIST, consisting of 60000 32x32x3 images, split into a train set of 50000 and a test set
of 10000. Except Section D.7, we consider binary classification on class airplane and bird, making
our train set contain 10000 samples, and the test set 2000 samples. The model consists of four
Conv-ReLu-AveragePooling layers and one linear layer. When training on CIFAR10, we follow the
standard practice for differential privacy [2, 36] and fine-tune a whole model pre-trained non-privately
on the more complex CIFAR100, a similarly sized but more complex benchmark dataset.

D.2 Training Details

We simulate the federated learning setup by splitting the training datasets for N FL users in an i.i.d
manner. FL users run SGD with learning rate ⌘, momentum 0.9, weight decay 0.0005 to update the
local models. The training parameter setups are summarized in Table 1. Following McMahan et

al. [46] that use � ⇡ 1
N1.1 as privacy parameter, for UserDP-FedAvg we set � = 0.0029 according

to the total number of users, and for InsDP-FedAvg we set � = 0.00001 according the total number
of training samples. Next we summarize the privacy guarantees and clean accuracy offered when we
study the certified prediction and certified attack cost, which are also the training parameters setups
when k = 0 in Figure 1, 2, 4, 5, 7, 6.

User-level DPFL In order to study the user-level certified prediction under different privacy guar-
antee, for MNIST, we set ✏ to be 0.2808, 0.4187, 0.6298, 0.8694, 1.8504, 2.8305, 4.8913, 6.9269,
which are obtained by training UserDP-FedAvg FL model for 3 rounds with noise level
� = 3.0, 2.3, 1.8, 1.5, 1.0, 0.8, 0.6, 0.5, respectively (Figure 1(a)). For CIFAR-10, we
set ✏ to be 0.2444, 0.3663, 0.4527, 0.5460, 0.8781, 1.3551, 2.0757, 2.9755, 6.2436, which are
obtained by training UserDP-FedAvg FL model for one round with noise level � =
4.0, 3.0, 2.6, 2.3, 1.7, 1.3, 1.0, 0.8, 0.5, respectively (Figure 1(b)).
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To certify the attack cost under different number of adversarial users k (Figure 2), for MNIST, we set
the noise level � to be 2.5. When k = 0, after training UserDP-FedAvg for T = 3, 4, 5 rounds, we
obtain FL models with privacy guarantee ✏ = 0.3672, 0.4025, 0.4344 and clean accuracy (average
over M runs) 86.69%, 88.76%, 88.99%. For CIFAR-10, we set the noise level � to be 3.0. After
training UserDP-FedAvg for T = 3, 4 rounds under k = 0, we obtain FL models with privacy
guarantee ✏ = 0.5346, 0.5978 and clean accuracy 78.63%, 78.46%.

With the interest of certifying attack cost under different user-level DP guarantee (Figure 4, Fig-
ure 7), we explore the empirical attack cost and the certified attack cost lower bound given differ-
ent ✏. For MNIST, we set the privacy guarantee ✏ to be 1.2716, 0.8794, 0.6608, 0.5249, 0.4344,
which are obtained by training UserDP-FedAvg FL models for 5 rounds under noise
level � = 1.3, 1.6, 1.9, 2.2, 2.5, respectively, and the clean accuracy for the correspond-
ing models are 99.50%, 99.06%, 96.52%, 93.39%, 88.99%. For CIFAR-10, we set the pri-
vacy guarantee ✏ to be 1.600, 1.2127, 1.0395.0.8530, 0.7616, 0.6543, 0.5978, which are ob-
tained by training UserDP-FedAvg FL models for 4 rounds under noise level � =
1.5, 1.8, 2.0, 2.3, 2.5, 2.8, 3.0, respectively, and the clean accuracy for the corresponding models
are 85.59%, 84.52%, 83.23%, 81.90%, 81.27%, 79.23%, 78.46%.

Instance-level DPFL To certify the prediction for instance-level DPFL un-
der different privacy guarantee, for MNIST, we set privacy cost ✏ to be
0.2029, 0.2251, 0.2484, 0.3593, 0.4589, 0.6373, 1.0587, 3.5691, which are obtained
by training InsDP-FedAvg FL models for 3 rounds with noise level � =
15, 10, 8, 5, 4, 3, 2, 1, respectively (Figure 1(c)). For CIFAR-10, we set privacy cost ✏ to be
0.3158, 0.3587, 0.4221, 0.5130, 0.6546, 0.9067, 1.4949, 4.6978, which are obtained by training
InsDP-FedAvg FL models for one round with noise level � = 8, 7, 6, 5, 4, 3, 2, 1, respectively
(Figure 1(d)).

With the aim to study certified attack cost under different number of adversarial instances k, for
MNIST, we set the noise level � to be 10. When k = 0, after training InsDP-FedAvg for T = 4, 9
rounds, we obtain FL models with privacy guarantee ✏ = 0.2383, 0.304 and clean accuracy (average
over M runs) 96.40%, 96.93% (Figure 6(a)(b)). For CIFAR-10, we set the noise level � to be
8.0. After training InsDP-FedAvg for one round under k = 0, we obtain FL models with privacy
guarantee ✏ = 0.3158 and clean accuracy 61.78% (Figure 5(a)(b)).

In order to study the empirical attack cost and certified attack cost lower bound
under different instance-level DP guarantee, we set the privacy guarantee ✏ to
be 0.5016, 0.311, 0.2646, 0.2318, 0.2202, 0.2096, 0.205 for MNIST, which are ob-
tained by training InsDP-FedAvg FL models for 6 rounds under noise level � =
5, 8, 10, 13, 15, 18, 20, respectively, and the clean accuracy for the corresponding mod-
els are 99.60%, 98.81%, 97.34%, 92.29%, 88.01%, 80.94%, 79.60% (Figure 6 (c)(d)). For
CIFAR-10, we set the privacy guarantee ✏ to be 1.261, 0.9146, 0.7187, 0.5923, 0.5038, 0.4385,
which are obtained by training InsDP-FedAvg FL models for 2 rounds under noise level
� = 3, 4, 5, 6, 7, 8, respectively, and the clean accuracy for the corresponding models are
84.47%, 80.99%, 76.01%, 68.65%, 63.07%, 60.65% (Figure 5 (c)(d)).

With the intention of exploring the upper bound for k given ⌧ under different instance-level DP
guarantee, for MNIST, we set noise level � to be 5, 8, 10, 13, 20, respectively, to obtain instance-DP
FL models after 10 rounds with privacy guarantee ✏ = 0.6439, 0.3937, 0.3172, 0.2626, 0.2179 and
clean accuracy 99.58%, 98.83%, 97.58%, 95.23%, 85.72% (Figure 7(c)). For CIFAR-10, we set
noise level � to be 3, 4, 5, 6, 7, 8 and train InsDP-FedAvg for T = 3 rounds, to obtain FL mod-
els with privacy guarantee ✏ = 1.5365, 1.1162, 0.8777, 0.7238, 0.6159, 0.5361 and clean accuracy
84.34%, 80.27%, 74.62%, 66.94%, 62.14%, 59.75% (Figure 7(d)).

D.3 Additional Implementation Details

Figure 3: Backdoor pattern (left) and
distributed backdoor patterns (right) on
CIFAR-10.

(Threat Models) For the attacks against UserDP-FedAvg,
by default, the local poison fraction ↵ = 100%, and the
scale factor � = 50. We use same parameters setups
for all k attackers. In terms of label flipping attacks, the
attackers swap the label of images in source class (digit
1 for MNIST; bird for CIFAR-10) into the target label
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(digit 0 for MNIST; airplane for CIFAR-10). In terms of
backdoor attacks in MNIST and CIFAR-10, the attackers
add a backdoor pattern, as shown in Figure 3 (left), in
images and swap the label of any sample with such pattern into the target label (digit 0 for MNIST;
airplane for CIFAR-10). In terms of distributed backdoor attacks, Figure 3 (right) shows an example
when the triangle pattern is evenly decomposed into k = 4 parts, and they are used as the distributed
patterns for k = 4 attackers respectively. For the cases where there are more or fewer distributed
attackers, the similar decomposition strategy is adopted.

For the attacks against InsDP-FedAvg, the same target classes and backdoor patterns are used as
UserDP-FedAvg. The parameters setups are the same for all k poisoned instances.

(Robustness Certification) We certified 2115/2000 test samples from the MNIST/CIFAR-10 test
sets. In Theorem 3 and Corollary 1 that are related to certified attack cost, C̄ specifies the range of
C(·). In the implementation, C̄ is set to be larger than the maximum empirical attack cost evaluated
on the test sets (see Table 1 for details). For each dataset, we use the same C̄ for cost function C

defined in Example 1 and Example 2. When using Monte-Carlo sampling, we run M = 1000 times
for certified accuracy, and M = 100 times for certified attack cost in all experiments.

(Machines) We simulate the federated learning setup (1 server and N users) on a Linux machine with
Intel® Xeon® Gold 6132 CPUs and 8 NVidia® 1080Ti GPUs.

(Libraries) All code is implemented in Pytorch [49]. Please see the submitted code for full details.

D.4 Certified Attack Cost of user-level DPFL under Different ✏

Here we further explore the impacts of different factors on the certified attack cost. Figure 4 presents
the empirical attack cost and the certified attack cost lower bound given different ✏ on user-level
DP. It is shown that as the privacy guarantee becomes stronger, i.e. smaller ✏, the model is more
robust achieving higher J(D0) and J(D0). In Figure 7 (a)(b), we train user-level (✏, �) DPFL models,
calculate corresponding J(D), and plot the lower bound of k given different attack effectiveness
hyperparameter ⌧ according to Corollary 1. It shows that 1) when the required attack effectiveness is
higher, i.e., ⌧ is larger, more number of attackers is required. 2) To achieve the same effectiveness of
attack, fewer number of attackers is needed for larger ✏, which means that DPFL model with weaker
privacy is more vulnerable to poisoning attacks.

Figure 4: Certified attack cost of user-level DPFL with different ✏ under different attacks.

D.5 Robustness Evaluation of Instance-level DPFL

Certified Prediction. Figure 1(c)(d) show the instance-level certified accuracy under different ✏. The
optimal ✏ for K is around 0.3593 for MNIST and 0.6546 for CIFAR-10, which is aligned with our
observation of the tradeoff between certified accuracy and privacy on user-level DPFL (Section 5.1).

Certified Attack Cost. Figure 5 show the certified attack cost on CIFAR-10. From Figure 5 (a)(b),
poisoning more instances (i.e., larger k) induces lower theoretical and empirical attack cost. From
Figure 5 (c)(d), it is clear that instance-level DPFL with stronger privacy guarantee provides higher
attack cost both empirically and theoretically, meaning that it is more robust against poisoning attacks.
Figure 6 shows the robustness evaluation of instance-level DPFL on MNIST where the results are
similar to the results on CIFAR-10 in Figure 5.

Figure 7 (c)(d) show the lower bound of k under different instance-level ✏ given different ⌧ . Fewer
poisoned instances are required to reduce the J(D0) to the similar level for a less private DPFL model,
indicating that the model is easier to be attacked.
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)

Figure 5: Certified attack cost of instance-level DPFL under different attacks given different number of
malicious instances k (a)(b) and different ✏ (c)(d).

Figure 6: Certified attack cost of instance-level DPFL on MNIST under different attacks given different number
of malicious instances k (a)(b) and different ✏ (c)(d).

D.6 Certified Accuracy with Confidence Level

Here we present the certified accuracy with confidence level. We use Hoeffding’s inequality [33]
to calibrates the empirical estimation with one-sided error tolerance  , i.e., one-sided confidence
level 1 �  . We first use Monte-Carlo sampling by running the private FL algorithms for M

times, with class confidence f
s
c = fc(M(D), x) for class c each time. We denote the empirical

estimation as eFc(M(D), x) = 1
M

PM
s=1 f

s
c . For a test input x, suppose A,B 2 [C] satisfy A =

argmaxc2[C]
eFc(M(D), x) and B = argmaxc2[C]:c 6=A eFc(M(D), x). For a given error tolerance

 , we use Hoeffding’s inequality to compute a lower bound FA(M(D), x) on the class confidence
FA(M(D), x) and a upper bound FB(M(D), x) on the class confidence FB(M(D), x) according
to

FA(M(D), x) = eFA(M(D), x)�

r
log(1/ )

2M
, FB(M(D), x) = eFB(M(D), x)+

r
log(1/ )

2M
.

(6)

FA(M(D), x) and FB(M(D), x) are used as the expected class confidences for the evaluation of
Theorem 2. We use  = 0.01 and M = 1000 for all experiments.

As shown in Figure 8, we can observe the same tradeoff between ✏ and certified accuracy as we
discussed in Figure 1. In general, the K in Figure 8 is smaller than the K in Figure 1 because we
calibrate the empirical estimation according to Eq. (6), and the class confidence gap between top-1
and top-2 class is narrowed.

D.7 Robustness Evaluation of user-level DPFL on 10-class Classification

Here we report the robustness evaluation of user-level DPFL under backdoor attacks on 10-class
classification problem. Figure 10 presents the certified accuracy under different ✏. We can observe
the tradeoff between ✏ and certified accuracy on MNIST. On CIFAR-10, larger k can be certified with
smaller ✏. The certified K is relatively small because we set large ✏ to preserve a reasonable accuracy
for 10-class classification. Our results can inspire advanced DP mechanisms that provide tighter
privacy guarantee (i.e., smaller ✏) while achieving similar level of accuracy. In terms of certified
attack cost, as shown in Figure 9 and 11, the trends are similar to the 2-class results in Figure 2, 4
and 7.

E Proofs of Certified Robustness Analysis

We restate our Lemma 1 here.
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Figure 7: Lower bound of k under user-level ✏ (a,b) and instance-level ✏ (c,d) given attack effectiveness ⌧ .

Figure 8: Certified accuracy under 99% confidence of FL satisfying user-level DP (a,b), and instance-level DP
(c,d).

Lemma 1 (Group DP). For mechanism M that satisfies (✏, �)-DP, it satisfies (k✏, 1�ek✏

1�e✏ �)-DP for

groups of size k. That is, for any d, d
0
2 D that differ by k individuals, and any E ✓ ⇥ it holds that

Pr[M(d) 2 E]  e
k✏ Pr [M (d0) 2 E] + 1�ek✏

1�e✏ �.

Proof. We denote d as d0, d0 as dk. di differ i individuals with d0. For any i 2 [1, k], di and di�1

differ by one individual, thus

Pr[M(di�1)]  e
✏ Pr[M(di)] + �. (7)

By iteratively applying Eq. (7) k times, we have

Pr[M(d0)]  e
k✏ Pr[M(dk)] + (1 + e

✏ + e
2✏ + . . .+ e

(k�1)✏)�

= e
k✏ Pr[M(dk)] +

1� e
k✏

1� e✏
�

Before we prove Theorem 1, we introduce the following lemma:
Lemma 3. Suppose a randomized mechanism M satisfies user-level (✏, �)-DP. For two user sets B

and B
0

that differ by one user, D and D
0

are the corresponding training datasets. For a test input x,

for any c 2 [C] , fc(M(D), x) 2 [0, 1] is the class confidence, then the expected class confidence

Fc(M(D), x) := E[fc(M(D), x)] meets the following property:

Fc(M(D), x)  e
✏
Fc(M(D0), x) + � (8)

Proof. Define ⇥(a) := {✓ : fc(✓, x) > a}. Then

Fc(M(D), x) = E[fc(M(D), x)] =

Z 1

0
P [fc(M(D), x) > a] da

=

Z 1

0
P [M(D) 2 ⇥(a)] da



Z 1

0
(e✏P [M(D0) 2 ⇥(a)] + �) da

=

Z 1

0
e
✏P [fc(M(D0), x) > a] da+

Z 1

0
�da

= e
✏
Fc(M(D0), x) + �
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Figure 9: Certified attack cost of user-level DPFL on 10-class classification given different number of malicious
instances k (a)(b) and different ✏ (c)(d).

Figure 10: Certified accuracy of FL satisfying user-
level DP on 10-class classification.

Figure 11: Lower bound of k on 10-class classification
under user-level ✏ given attack effectiveness ⌧ .

We recall Theorem 1.
Theorem 1 (Condition for Certified Prediction under One Adversarial User). Suppose a randomized

mechanism M satisfies user-level (✏, �)-DP. For two user sets B and B
0

that differ by one user,

D and D
0

are the corresponding training datasets. For a test input x, suppose A,B 2 [C] satisfy

A = argmaxc2[C] Fc(M(D), x) and B = argmaxc2[C]:c 6=A Fc(M(D), x), then if

FA(M(D), x) > e
2✏
FB(M(D), x) + (1 + e

✏)�, (1)

it is guaranteed that

H(M(D0), x) = H(M(D), x) = A.

Proof. According to Lemma 3,

FA(M(D), x)  e
✏
FA(M(D0), x) + � (9)

FB(M(D0), x)  e
✏
FB(M(D), x) + �. (10)

Then

FA(M(D0), x) �
FA(M(D), x)� �

e✏
(Because of Eq. 9)

�
e
2✏
FB(M(D), x) + (1 + e

✏)� � �

e✏
(Because of the given condition Eq. 1)

= e
✏
FB(M(D), x) + �

� e
✏

✓
FB(M(D0), x)� �

e✏

◆
+ � (Because of Eq. 10)

= FB(M(D0), x),

which indicates that the prediction of M(D0) at x is A by definition.

Before we prove Theorem 2, we introduce the following lemma:
Lemma 4. Suppose a randomized mechanism M satisfies user-level (✏, �)-DP. For two user sets

B and B
0

that differ k users, D and D
0

are the corresponding training datasets. For a test input x,

for any c 2 [C] , fc(M(D), x) 2 [0, 1] is the class confidence, then the expected class confidence

Fc(M(D), x) := E[fc(M(D), x)] meets the following property:

Fc(M(D), x)  e
k✏
Fc(M(D0), x) +

1� e
k✏

1� e✏
� (11)
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Proof. Define ⇥(a) := {✓ : fc(✓, x) > a}. Then

Fc(M(D), x) =

Z 1

0
P [fc(M(D), x) > a] da

=

Z 1

0
P [M(D) 2 ⇥(a)] da



Z 1

0

✓
e
k✏P [M(D0) 2 ⇥(a)] +

1� e
k✏

1� e✏
�

◆
da

(Because of Group DP property in Lemma 1)

=

Z 1

0
e
k✏P [fc(M(D0), x) > a] da+

Z 1

0

1� e
k✏

1� e✏
�da

= e
k✏
Fc(M(D0), x) +

1� e
k✏

1� e✏
�

We recall Theorem 2.1

Theorem 2 (Upper Bound of k for Certified Prediction). Suppose a randomized mechanism M satis-

fies user-level (✏, �)-DP. For two user sets B and B
0

that differ k users, D and D
0

are the correspond-

ing training datasets. For a test input x, suppose A,B 2 [C] satisfy A = argmaxc2[C] Fc(M(D), x)
and B = argmaxc2[C]:c 6=A Fc(M(D), x), then H(M(D0), x) = H(M(D), x) = A, 8k < K
where K is the certified number of adversarial users:

K =
1

2✏
log

FA(M(D), x)(e✏ � 1) + �

FB(M(D), x)(e✏ � 1) + �
(2)

Proof. According to Lemma 4, we have

FA(M(D), x)  e
k✏
FA(M(D0), x) +

1� e
k✏

1� e✏
� (12)

FB(M(D0), x)  e
k✏
FB(M(D), x) +

1� e
k✏

1� e✏
�. (13)

We can re-write the given condition k < K according to Eq. (2) as

e
2k✏

FB(M(D), x) + (1 + e
k✏)

1� e
k✏

1� e✏
� < FA(M(D), x). (14)

Then

FA(M(D0), x) �
FA(M(D), x)� 1�ek✏

1�e✏ �

ek✏
(Because of Eq. 12)

>
e
2k✏

FB(M(D), x) + (1 + e
k✏) 1�ek✏

1�e✏ � �
1�ek✏

1�e✏ �

ek✏

(Because of the given condition Eq.14)

= e
k✏
FB(M(D), x) +

1� e
k✏

1� e✏
�

� e
k✏

 
FB(M(D0), x)� 1�ek✏

1�e✏ �

ek✏

!
+

1� e
k✏

1� e✏
� (Because of Eq. 13)

= FB(M(D0), x),

which indicates that the prediction of M(D0) at x is A by definition.

1We apologize that there is a typo in Theorem 2 of the submitted main paper, where C̄, which equals to 1,
should be removed from the Eq. (2). We present the correct Theorem 2 in appendix.
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We recall Theorem 3.
Theorem 3 (Attack Cost with k Attackers). Suppose a randomized mechanism M satisfies user-level

(✏, �)-DP. For two user sets B and B
0

that differ k users, D and D
0

are the corresponding training

datasets. Let J(D) be the expected attack cost where |C(·)|  C̄. Then,

min{ek✏J(D) +
ek✏ � 1
e✏ � 1

�C̄, C̄} � J(D0) � max{e�k✏J(D)� 1� e�k✏

e✏ � 1
�C̄, 0}, if C(·) � 0

min{e�k✏J(D) +
1� e�k✏

e✏ � 1
�C̄, 0} � J(D0) � max{ek✏J(D)� ek✏ � 1

e✏ � 1
�C̄,�C̄}, if C(·)  0

(3)

Proof. We first consider C(·) � 0. Define ⇥(a) = {✓ : C(✓) > a}.

J(D) =

Z C̄

0
P [C(M(D)) > a] da

=

Z C̄

0
P [M(D)) 2 ⇥(a)] da



Z C̄

0

✓
e
k✏P [M(D0)) 2 ⇥(a)] +

1� e
k✏

1� e✏
�

◆
da

(Because of Group DP property in Lemma 1)

=

Z C̄

0
e
k✏P [M(D0)) 2 ⇥(a)] da+

1� e
k✏

1� e✏
�C̄

=

Z C̄

0
e
k✏P [C(M(D0)) > a] da+

1� e
k✏

1� e✏
�C̄

= e
k✏
J(D0) +

1� e
k✏

1� e✏
�C̄

i.e.,

J(D0) � e
�k✏

J(D)�
1� e

�k✏

e✏ � 1
�C̄.

Switch the role of D and D
0, we have

J(D0)  e
k✏
J(D) +

1� e
k✏

1� e✏
�C̄.

Also note that 0  J(D0)  C̄ trivially holds due to 0  C(·)  C̄, thus

min{ek✏J(D) +
e
k✏
� 1

e✏ � 1
�C̄, C̄} � J(D0) � max{e�k✏

J(D)�
1� e

�k✏

e✏ � 1
�C̄, 0}.

Next we consider C(·)  0. Define ⇥(a) = {✓ : C(✓) < a}.

J(D) = �

Z 0

�C̄
P [C(M(D)) < a] da

= �

Z 0

�C̄
P [M(D)) 2 ⇥(a)] da

� �

Z 0

�C̄

✓
e
k✏P [M(D0)) 2 ⇥(a)] +

1� e
k✏

1� e✏
�

◆
da

(Because of Group DP property in Lemma 1)

= �

Z 0

�C̄
e
k✏P [M(D0)) 2 ⇥(a)] da�

1� e
k✏

1� e✏
�C̄

= �

Z 0

�C̄
e
k✏P [C(M(D0)) < a] da�

1� e
k✏

1� e✏
�C̄

= e
k✏
J(D0)�

1� e
k✏

1� e✏
�C̄
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i.e.,

J(D0)  e
�k✏

J(D) +
1� e

�k✏

e✏ � 1
�C̄.

Switch the role of D and D
0, we have

J(D0) � e
k✏
J(D)�

1� e
k✏

1� e✏
�C̄.

Also note that �C̄  J(D0)  0 trivially holds due to �C̄  C(·)  0, thus

min{e�k✏
J(D) +

1� e
�k✏

e✏ � 1
�C̄, 0} � J(D0) � max{ek✏J(D)�

e
k✏
� 1

e✏ � 1
�C̄,�C̄}

We recall Corollary 1.
Corollary 1 (Lower Bound of k Given ⌧ ). Suppose a randomized mechanism M satisfies user-

level (✏, �)-DP. Let attack cost function be C, the expected attack cost be J(·). In order to achieve

J(D0)  1
⌧ J(D) for ⌧ � 1 when 0  C(·)  C̄, or achieve J(D0)  ⌧J(D) for 1  ⌧  �

C̄
J(D)

when �C̄  C(·)  0, the number of adversarial users should satisfy:

k �
1

✏
log

(e✏ � 1) J(D)⌧ + C̄�⌧

(e✏ � 1) J(D) + C̄�⌧
or k �

1

✏
log

(e✏ � 1) J(D)⌧ � C̄�

(e✏ � 1) J(D)� C̄�
respectively. (4)

Proof. We first consider C(·) � 0. According to the lower bound in Theorem 3, when B
0 and

B differ k users, J(D0) � e
�k✏

J(D) � 1�e�k✏

e✏�1 �C̄. Since we require J(D0)  1
⌧ J(D), then

e
�k✏

J(D)� 1�e�k✏

e✏�1 �C̄ 
1
⌧ J(D). Rearranging gives the result.

Next, we consider C(·)  0. According to the lower bound in Theorem 3, when B
0 and B differ k

users, J(D0) � e
k✏
J(D)� ek✏�1

e✏�1 �C̄. Since we require J(D0)  ⌧J(D), then ek✏J(D)� ek✏�1
e✏�1 �C̄ 

⌧J(D). Rearranging gives the result.

We note that all the above robustness certification related proofs are built upon the user-level (✏, �)-DP
property and the Group DP property. According to Definition 2 and Definition 3, the definition of
user-level DP and instance-level DP are both induced from DP (Definition 1) despite the different
definitions of adjacent datasets. By applying the definition of instance-level (✏, �)-DP and following
the proof steps of Theorem 1, 2, 3 and Corollary 1, we can derive the similar theoretical conclusions
for instance-level DP, leading to Theorem 5 to achieve the certifiably robsut FL for free given the DP
property.
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