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Abstract

Federated learning data is drawn from a distribution of distributions: clients are
drawn from a meta-distribution, and their data are drawn from local data distri-
butions. Thus generalization studies in federated learning should separate perfor-
mance gaps from unseen client data (out-of-sample gap) from performance gaps
from unseen client distributions (participation gap). In this work, we propose a
framework for disentangling these performance gaps. Using this framework, we
observe and explain differences in behavior across natural and synthetic federated
datasets, indicating that dataset synthesis strategy can be important for realistic
simulations of generalization in federated learning. We propose a semantic syn-
thesis strategy that enables realistic simulation without naturally-partitioned data.
Informed by our findings, we call out community suggestions for future federated
learning works.

1 Introduction

Federated learning (FL) enables distributed clients to train a machine learning model collaboratively
via focused communication with a coordinating server. In cross-device FL settings, clients are
sampled from a population for participation in each round of training [Kairouz et al., 2019, Li et al.,
2020a]. Each participating client possesses its own data distribution, from which finite samples are
drawn for federated training.

Given this problem framing, defining generalization in FL is not as obvious as in centralized learning.
Existing works generally characterize the difference between empirical and expected risk for clients
participating in training [Mohri et al., 2019, Yagli et al., 2020, Reddi et al., 2021, Karimireddy
et al., 2020, Yuan et al., 2021]. However, in cross-device settings, which we focus on in this work,
clients are sampled from a large population with unreliable availability. Many or most clients may
never participate in training [Kairouz et al., 2019, Singhal et al., 2021]. Thus it is crucial to better
understand expected performance for non-participating clients.

In this work, we model clients’ data distributions as drawn from a meta population distribution [Wang
et al., 2021], an assumption we argue is reasonable in real-world FL settings. We use this framing
to define two generalization gaps to study in FL: the out-of-sample gap, or the difference between
empirical and expected risk for participating clients, and the participation gap, or the difference
in expected risk between participating and non-participating clients. Previous works generally
ignore the participation gap or fail to disentangle it from the out-of-sample gap, but we observe
significant participation gaps in practice across six federated datasets (see Figure 1), indicating that
the participation gap is an important but neglected feature of generalization in FL.

We present a systematic study of generalization in FL across six tasks. We observe that focusing
only on out-of-sample gaps misses important effects, including differences in generalization behavior
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Figure 1: Federated training results demonstrating participation gaps for six different tasks.
We conduct experiments on four image classification tasks and two text prediction tasks. As described
in Section 3.1, the participation gap can be estimated as the difference in metrics between participating
validation and unparticipating data (defined in Figure 2). Prior works either ignore the participation
gap or fail to separate it from other generalization gaps, indicating the participation gap is a neglected
feature of generalization in FL.

across naturally-partitioned and synthetically-partitioned federated datasets. We use our results to
inform a series of recommendations for future works studying generalization in FL.

Our contributions:
• Propose a three-way split for measuring out-of-sample and participation gaps in centralized and

FL settings where data is drawn from a distribution of distributions (see Figure 2).
• Observe significant participation gaps across six different tasks (see Figure 1) and perform

empirical studies on how various factors, e.g., number of clients and client diversity, affect
generalization performance (see Appendix B).

• Observe significant differences in generalization behavior across naturally-partitioned and
synthetically-partitioned federated datasets, and propose semantic partitioning, a dataset synthesis
strategy that enables more realistic simulations of generalization behavior in FL without requiring
naturally-partitioned data (see Section 4).

• Present a model to define the participation gap (Section 2), reveal its connection with data
heterogeneity (Section 3.2), and explain differences in generalization behavior between label-
based partitioning and semantic partitioning (Section 4.2).

• Present recommendations for future FL works, informed by our findings (see Section 5).
• Release an extensible open-source code library for studying generalization in FL (see Section 6).

We defer the literature review to Appendix A due to space constraints.

2 Setup for Generalization in FL

We model each FL client as a data source associated with a local distribution and the overall population
as a meta-distribution over all possible clients.
Definition 2.1 (Federated Learning Problem). 1. Let ⌅ be the (possibly infinite) collection of all the

possible data elements, e.g., image-label pairs. For any parameters w in parameter space ⇥, we
use f(w, ⇠) to denote the loss at element ⇠ 2 ⌅ with parameter w.

2. Let C be the (possibly infinite) collection of all the possible clients. Every client c 2 C is associated
with a local distribution Dc supported on ⌅.

3. Further, we assume there is a meta-distribution P supported on client set C, and each client c is
associated with a weight ⇢c for aggregation.

The goal is to optimize the following two-level expected loss as follows:

F (w) := Ec⇠P [⇢c · E⇠⇠Dc [f(w; ⇠)]] . (1)

Similar formulations as in Equation (1) have been proposed in the existing literature [Wang et al.,
2021, Reisizadeh et al., 2020]. To understand Equation (1), consider a random procedure that
repeatedly draws clients c from the meta-distribution P and then evaluates the loss on samples ⇠
drawn from the local data distribution Dc. Equation (1) then characterizes the weighted-average limit
of the above process.
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Remark. The selection of client weights {⇢c : c 2 C} depends on the desired aggregation pattern.
For example, setting ⇢c ⌘ 1 will equalize the performance share across all clients. Another common
example is setting ⇢c to be proportional to the training dataset size contributed by client c.

Intuitive Justification. The formulation in Equation (1) is especially natural in cross-device FL
settings, where the number of clients is generally large and modeling clients’ local distributions
as sampled from a meta-distribution is reasonable. This assumption also makes the problem of
generalization to non-participating client distributions more tractable since samples from the meta-
distribution are seen during training.

Discretization. While the ultimate goal is to optimize the expected loss over the entire meta-
distribution P and client local distributions {Dc : c 2 C}, only finite training data and a finite number
of clients are accessible during training. We call the subset of clients that contributes training data the
participating clients, denoted as Ĉ. We assume Ĉ is drawn from the meta-distribution P . For each
participating client c 2 Ĉ, we denote ⌅̂c the training data contributed by client c. We call these data
participating training client data and assume ⌅̂c satisfies the local distribution Dc.

Definition 2.2. The empirical risk on the participating training client data is defined by

Fpart_train(w) :=
1

|Ĉ|

X

c2Ĉ

2

4⇢c ·

0

@ 1

|⌅̂c|

X

⇠2|⌅̂c|

f(w; ⇠)

1

A

3

5 . (2)

Equation (2) characterizes the performance of the model (at parameter w) on the observed data
possessed by observed clients.

There are two levels of generalization between Equation (2) and Equation (1): (i) the generalization
from finite training data to unseen data, and (ii) the generalization from finite participating clients to
unseen clients. To disentangle the effect of the two levels, a natural intermediate stage is to consider
the performance on unseen data of participating (seen) clients.

Definition 2.3. The semi-empirical risk on the participating validation client data is defined by

Fpart_val(w) :=
1

|Ĉ|

X

c2Ĉ

[⇢c · (E⇠⇠Dcf(w; ⇠))] . (3)

Equation (3) differs from Equation (2) by replacing the intra-client empirical loss with the expected
loss over Dc. We shall also call F (w) defined in Equation (1) the unparticipating expected risk and
denote it as Funpart(w) for consistency. Now we are ready to define the two levels of generalization
gaps formally.

Definition 2.4. The out-of-sample gap is defined as Fpart_val(w)� Fpart_train(w).

Definition 2.5. The participation gap is defined as Funpart(w)� Fpart_val(w).

Note that these gaps are also meaningful in centralized learning settings where data is sampled from
a distribution of distributions.

3 Understanding Generalization Gaps

3.1 Estimating Risks and Gaps via the Three-Way Split

Both Fpart_val and Funpart take an expectation over the distribution of clients or data. To estimate
these two risks in practice, we propose splitting datasets into three blocks. The procedure is demon-
strated in Figure 2. Given a dataset with client assignment, we first hold out a percentage of clients
(e.g., 20%) as unparticipating clients, as shown in the rightmost two columns (in purple). The
remaining clients are participating clients. We refer to this split as inter-client split. Within each
participating client, we hold out a percentage of data (e.g., 20%) as participating validation data, as
shown in the upper left block (in orange). The remaining data is the participating training client data,
as shown in the lower left block (in blue). We refer to this second split as intra-client split.
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Figure 2: Illustration of the three-way split via a
visualization of the EMNIST digits dataset. Each
column corresponds to the dataset of one client. A
dataset is split into participating training, participating
validation, and unparticipating data, which enables
separate measurement of out-of-sample and participa-
tion gaps (unlike other works). Note we only present
the digit “6” for illustrative purposes.

Existing FL literature and benchmarks typically conduct either an inter-client or intra-client train-
validation split. However, neither inter-client nor intra-client split alone can reveal the participation
gap.4 To the best of our knowledge, this is the first work that conducts both splits simultaneously.

3.2 Why is the Participation Gap Interesting?

Participation gap is an intrinsic property of FL due to heterogeneity. Heterogeneity across
clients is one of the most important phenomena in FL. We identify that the participation gap is another
outcome of heterogeneity in FL, in that the gap will not exist if data is homogeneous. Formally, we
can establish the following proposition.

Proposition 3.1. If Dc ⌘ D for any c 2 C and ⇢c ⌘ ⇢, then for any participating clients Ĉ ⇢ C and
w in domain, the participation gap is always zero in that Funpart(w) ⌘ Fpart_val(w).

Proposition 3.1 holds by definition as

Fpart_val(w) =
1

|Ĉ|

X

c2Ĉ

[⇢ · (E⇠⇠Dcf(w; ⇠))] = ⇢·(E⇠⇠Df(w; ⇠)) = Ec⇠P [⇢ · E⇠⇠D[f(w; ⇠)]] = Funpart(w).

Remark. We assume unweighted risk with ⇢c ⌘ ⇢ for ease of exposition. Even if ⇢c are different,
one can still show Funpart(w)

Fpart_val(w) is always equal to a constant independent of w. Therefore the triviality
of the participation gap for homogeneous data still holds in the logarithmitic sense.

Participation gap can quantify client diversity. The participation gap can provide insight into a
federated dataset since it provides a quantifiable measure of client diversity / heterogeneity. With other
aspects controlled, a federated dataset with larger participation gap tends to have greater heterogeneity.
For example, using the same model and hyperparameters, we observe in Appendix B that CIFAR-100
exhibits a larger participation gap than CIFAR-10. Unlike other indirect measures (such as the
degradation of federated performance relative to centralized performance), the participation gap is
intrinsic in federated datasets and more consistent with respect to training hyperparameters.

Participation gap can measure overfitting on the population distribution. Just as a generalization
gap that increases over time in centralized training can indicate overfitting on training samples, a
large or increasing participation gap can indicate a training process is overfitting on participating
clients. We observe this effect in Figure 1 for Shakespeare and Stack Overflow tasks. Thus measuring
this gap can be important for researchers developing models or algorithms to reduce overfitting.

Participation gap can quantify model robustness to unseen clients. From a modeler’s perspective,
the participation gap quantifies the loss of performance incurred by switching from seen clients to
unseen clients. The smaller the participation gap is, the more robust the model might be when
deployed. Therefore, estimating participation gap may guide modelers to design more robust models,
regularizers, and training algorithms.

Participation gap can quantify the incentive for clients to participate. From a client’s perspec-
tive, the participation gap offers a measure of the performance gain realized by switching from
unparticipating (not contributing training data) to participating (contributing training data). This is a
fair comparison since both Fpart_val and Funpart are estimated on unseen data. When the participation
gap is large (e.g., if only few clients participate), modelers might report the participation gap as a
well-justified incentive to encourage more clients to join a federated learning process.

4To see this, observe that inter-client split can only estimate Fpart_train and Funpart, and intra-client split
can only estimate Fpart_train and Fpart_val.
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4 Reflections on Client Heterogeneity and Synthetic Dataset Partitioning

Since participation gaps can quantify client dataset heterogeneity, we study how participation gaps
vary for different types of federated datasets. Many prior works [McMahan et al., 2017, Zhao et al.,
2018, Hsu et al., 2019, Reddi et al., 2021] have created synthetic federated versions of centralized
datasets. These centralized datasets do not have naturally-occurring client partitions and thus need to
be synthetically partitioned into clients. Due to the importance of heterogeneity in FL, partitioning
schemes generally ensure client datasets are heterogeneous in some respect. Previous works typically
impose heterogeneity at the label level. For example, Hsu et al. [2019] create heterogeneous federated
datasets by assigning each client a distribution over labels, where each local distribution is drawn
from a Dirichlet meta-distribution. Once conditioned on labels, the drawing process is homogeneous.
We refer to these schemes as label-based partitioning.5

While label heterogeneity is generally observed in natural federated datasets, it is not the only
observed form of heterogeneity. In particular, each client in a natural federated dataset has its own
separate data generating process. For example, for Federated EMNIST [Cohen et al., 2017], different
clients write characters using different handwriting. Label-based partitioning does not account for
this form of heterogeneity. To show this, in Figure 3 we visualize the clustering of client data between
natural and label-based partitioning [Hsu et al., 2019] for Federated EMNIST. We project clients
from each partitioning into a 2D space using T-SNE [Van der Maaten and Hinton, 2008] applied to
the raw pixel data. Naturally partitioned examples clearly cluster more than label-based partitioned
examples, which appear to be distributed similarly to the full data distribution.

Natural Partitioning

Label-Based Partitioning

Figure 3: T-SNE projection of different partitionings of EM-
NIST. The top panel shows the naturally-partitioned dataset (parti-
tioned by writer), the bottom panel shows the label-based synthetic
dataset. The gray points are the projections of examples from each
dataset, obtained by aggregating the data from 100 clients each.
The blue points show projections of data from a single client.
The naturally-partitioned client data appears much more tightly
clustered, whereas the label-based partitioned data appears simi-
larly distributed as the overall dataset, indicating that label-based
partitioning may not fully represent realistic client heterogeneity.

Interestingly, differences in heterogeneity also significantly affect generalization behavior. In Figure 4,
we compare the training progress of the naturally-partitioned EMNIST dataset with a label-based
partitioning following the scheme by Hsu et al. [2019]. Despite showing greater label heterogeneity
(Fig. 4(a)), the label-based partitioning does not recover any significant participation gap, in sharp
contrast to the natural partitioning (Fig. 4(d)). In Figure 5, we also see minimal participation gap in
label-based partitioning for CIFAR. This motivates a client partitioning approach that better preserves
the generalization behavior of naturally-partitioned datasets.

4.1 Semantic Client Partitioning and the Participation Gap

To explore and remediate differences in client heterogeneity across natural and synthetic datasets,
we propose a semantics-based framework to assign semantically similar examples to clients during
federated dataset partitioning. We instantiate this framework via an example of an image classification
task.

Our goal is to reverse-engineer the federated dataset-generating process described in Equation (1)
so that each client possesses semantically similar data. For example, for the EMNIST dataset, we
expect every client (writer) to (i) write in a consistent style for each digit (intra-client intra-label
similarity) and (ii) use a consistent writing style across all digits (intra-client inter-label similarity).
A simple approach might be to cluster similar examples together and sample client data from clusters.
However, if one directly clusters the entire dataset, the resulting clusters may end up largely correlated
to labels. To disentangle the effect of label heterogeneity and semantic heterogeneity, we propose the

5To avoid confusion, throughout this work, we use the term “partition” to refer to assigning data with no
client assignment into synthetic clients. The term “split” refers to splitting a federated dataset (with existing
client assignments) to measure different metrics (e.g., three-way-split).
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(a) Label histogram of
label-based partitioning

(b) Learning progress of
label-based partitioning

(c) Label histogram of
natural partitioning

(d) Learning progress of
natural partitioning

Figure 4: Comparison of label-based synthetic partitioning and natural partitioning of
EMNIST-10. Observe that label-based partitioning shows greater label heterogeneity (a) than
natural partitioning (c), while the participation gap (part_val� unpart) for label-based synthetic
partitioning (b) is significantly smaller than that for the natural partitioning (d).

following algorithm to enforce intra-client intra-label similarity and intra-client inter-label similarity
in two separate stages.

• Stage 1: For each label, we embed examples using a pretrained neural network (extracting
semantic features), and fit a Gaussian Mixture Model to cluster pretrained embeddings into groups.
Note that this results in multiple groups per label. This stage enforces intra-client intra-label
consistency.

• Stage 2: To package the clusters from different labels into clients, we aim to compute an optimal
multi-partite matching with cost-matrix defined by KL-divergence between the Gaussian clusters.
To reduce complexity, we heuristically solve the optimal multi-partite matching by progressively
solving the optimal bipartite matching at each time for randomly-chosen label pairs. This stage
enforces intra-client inter-label consistency.

We relegate the detailed setup to Appendix E. Using this procedure we can generate clients which
have similar example semantics. We show in Figure 5 that this method of partitioning preserves the
participation gap. In Appendix E, we visualize several examples of our semantic partitioning on
various datasets, which can serve as benchmarks for future works.

Figure 5: Comparison of label-based partitioning and semantic partitioning (ours). Results for
CIFAR-10 and CIFAR-100 are shown. Observe that semantic partitioning recovers the participation
gap typically observed in naturally-partitioned data.

4.2 Explaining differences between label-based and semantic partitioning

To explain the above behavior, we revisit our mathematical setup and the definition of the participation
gap. Recall that the participation gap is defined as (we omit the weights by setting ⇢c ⌘ 1 for
simplicity):

Ipart_gap(w) := Funpart(w)� Fpart_val(w) = Ec⇠P [E⇠⇠Dc [f(w; ⇠)]]� 1

|Ĉ|

X

c2Ĉ

[E⇠⇠Dc [f(w; ⇠)]] (4)

In order to express the ideas without diving into excessive details of measure theory, we assume
without loss of generality that the meta-distribution P is a continuous distribution supported on C with
probability density function pP(c). We also assume that for each client c 2 C, the local distribution
Dc is a continuous distribution supported on ⌅ with probability density function pDc(⇠). Therefore,
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the participation gap becomes

Iparticipation(w) =

Z

⇠2⌅

Z

c2C

f(w; ⇠)pDc(⇠)pP(c)dcd⇠ �
Z

⇠2⌅

1

|Ĉ|

X

c2Ĉ

f(w; ⇠)pDc(⇠)d⇠ (5)

=

Z

⇠2⌅

f(w; ⇠) ·

0

@
Z

c2C

pDc(⇠)pP(c)dc�
1

|Ĉ|

X

c2Ĉ

pDc(⇠)

1

A d⇠. (6)

Therefore the scale of participation gap could depend (negatively) on the concentration speed
from 1

|Ĉ|

P
c2Ĉ pDc(⇠) to

R
c2C pDc(⇠)pP(c)dc as |Ĉ| ! 1.6 We hypothesize that for label-based

partitioning, the concentration is fast because each client has a large entropy as it can cover the entire
distribution of a given label. On the other hand, for natural or semantic partitioning, the concentration
is slower as the local distribution of each client has lower entropy due to the (natural or synthetic)
semantic clustering.

We validate our hypothesis with an empirical estimation of local dataset entropy, shown in Figure 6.
We observe that the clients generated by label-based partitioning demonstrate much higher entropy
than the natural ones. Notably, our proposed semantic partitioning has a very similar entropy
distribution across clients as the natural partitioning. This indicates that the heterogeneity in EMNIST
is mostly attributed to semantic heterogeneity.
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Figure 6: Kernel density estimates of the distribution of
client entropy for naturally-partitioned clients (top), semantic-
partitioned clients (middle), and label-based partitioned clients
(bottom). While naturally and semantically partitioned clients appear
to have approximately the same distribution of client entropies, the
synthetically partitioned clients are distributed differently and have
higher average entropy (48 Nats) than the other forms of partitioning
(44 Nats). We refer readers to Appendix F for the detailed methodol-
ogy for the estimation of the entropy.

5 Community Suggestions

In this work we have used the three-way-split, dataset partitioning strategies, and distributions of
metrics to systematically study generalization behavior in FL. Our results inform the following
suggestions for the FL community:

• Researchers can use the three-way split to disentangle out-of-sample and participation gaps in
empirical studies of FL algorithms.

• When proposing new federated algorithms, researchers might prefer using naturally-partitioned or
semantically-partitioned datasets for more realistic simulations of generalization behavior.

• Distributions of metrics (e.g., percentiles, variance) may vary across groups in the three-way split
(see Table 2 and Figure 10). We suggest researchers report the distribution of metrics, instead of
just the average, when reporting metrics for participating and non-participating clients.

6 Open-Source Code Framework

We are releasing an extensible code framework for measuring out-of-sample and participation gaps
and distributions of metrics (e.g., percentiles) for federated algorithms across several tasks.We
include all tasks reported in this work; the framework is easily extended with additional tasks. We
also include libraries for performing label-based and semantic dataset partitioning (enabling new
benchmark datasets for future works, see Appendix E). This framework enables easy reproduction of
our results and facilitates future work. The framework is implemented using TensorFlow Federated
[Ingerman and Ostrowski, 2019]. The code is released under Apache License 2.0. We hope that the
release of this code encourages researchers to take up our suggestions presented in Section 5.

6One can make the above claim rigorous with standard learning theory approaches such as uniform conver-
gence and Rademacher complexity [Vapnik, 1998].
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