
A Unified Framework to Understand Decentralized
and Federated Optimization Algorithms: A
Multi-Rate Feedback Control Perspective

Xinwei Zhang, Mingyi Hong, Nicola Elia
Department of Electric and Computer Engineering

Minnesota University
zhan6234, mhong, nelia@umn.edu

Abstract

We propose a unified framework to analyze and design distributed optimization
algorithms. Through the lens of multi-rate feedback control, we show that a wide
class of distributed algorithms, including popular decentralized/federated schemes
such as decentralized gradient descent, gradient tracking, and federated averaging,
among others, can be viewed as discretizing a continuous time feedback control
system, but with different discretization patterns and/or multiple sampling rates.
This key observation not only allows us to develop a generic framework to analyze
the convergence of the entire algorithm class, more importantly, it leads to a new
way of designing new distributed algorithms. We develop the theory behind our
framework, and provide an example to highlight how the framework can be used
to analyze and extend the well-known gradient tracking algorithm.

1 Introduction
Distributed computation has played an important role in machine learning, partly due to the
dramatically increased size of the models and the datasets; see [1, 2] for a few recent surveys.
Heterogeneous computational and communication resources in the distributed system create a
number of different scenarios in distributed learning. For example, in a decentralized optimization
(DO) setting, the communication and computation resources are equally important, so the algorithms
alternatingly perform communication and communication steps [3, 4, 5, 6, 7]; In the Federated
Learning (FL) setting, the communication is the bottleneck of the system, so the algorithms typically
perform multiple local updates before one communication step [8, 9, 10, 11]; Additionally, in
order to identify the the optimal decentralized algorithms that utilize the minimum computation
and communication rounds, it is typically required to perform multiple communication steps before
one local update [12, 13].

However, there are a few looming concerns and challenges over the proliferation of these algorithms.
First, for some relatively hot problems, there are simply too many algorithms available, so much so
that it becomes difficult to track all the technical details. Is it possible to establish some general
guidelines to understand the fundamental relationships between algorithms that take similar forms,
or provide similar features/functionalities? Second, much of the recent research on this topic
appears to be increasingly focused on a specific setting (e.g., those that mentioned in the previous
section). However, an algorithm developed for FL may have already been rigorously developed,
analyzed, and tested for the DO setting, with only minor differences. Developing an algorithm
and its corresponding analysis takes significant time and effort, therefore it is desirable to have
some mechanisms in place to reduce the possibility of “reinventing the wheel”. We argue that there
is a strong demand of a framework for distributed optimization, which can help researchers and
practitioners to simplify their understanding about algorithm behaviors, predict performance, and
streamline algorithm design.
1st NeurIPS Workshop on New Frontiers in Federated Learning (NFFL 2021), Virtual Meeting.



Our main contribution is to build such a unified framework for distributed algorithms, using tools
from multi-rate feedback control systems. Specifically, we first show that, a special continuous-time
feedback control system is well-suited to capture a number of key properties of distributed
algorithms. We then show that when such a continuous-time system is discretized appropriately (in
which different parts of the system are discretized using different rates, hence the name “multi-rate”
system), it recovers a wide range of decentralized/federated algorithms. Finally, we provide a
generic convergence result that covers different feedback schemes as well as discretization patterns.
The major benefits of our proposed framework can be summarized as:

1) Using our framework, we can establish the connection between different subclasses of distributed
algorithms that are developed for different settings; in some sense, they can be viewed as applying
different discretization schemes to certain continuous-time control system;

2) Our framework helps predict the algorithm performance, and facilitates algorithm design – as
long as the continuous-time control system and the desired discretization pattern are identified,
our framework readily provides the various system parameters that are needed to ensure algorithm
convergence (an example is provided in the appendix to showcase how this can be done).

Note that there are many existing works which analyze optimization algorithms using control
theory, but they mainly focus on some very special class of algorithms. For examples, [14, 15,
16] study a restrictive class of simple convex optimization algorithms; the paper [17, 18, 19]
investigates the acceleration approaches for centralized problems in discrete time; [15, 19] focus
on the continuous-time system and ignore the impact of the discretization to these algorithms;
[20, 21, 22] investigate the connection between continuous-time system and discretized gradient
descent algorithm, but their approaches and analyses do not generalize to federated/decentralized
algorithms. It is also important to note that, to our knowledge, none of the above referred works
provide any insights about relationship between difference classes of distributed algorithms (i.e.,
between DO and FL), nor do they facilitate the design of new algorithms.

2 Continuous-time System
In this section, we provide a general description of the continuous-time multi-agent feedback control
system. We start by giving a general system structure and discuss the property of each controller
and how the controllers are related to the discrete-time optimization algorithms. Then we provide
the convergence properties of the system.

2.1 System Description
The Decentralized Optimization Problem. Consider a distributed system withN agents connected
by a strongly connected graph G = (V, E), each optimizes a smooth and possibility non-convex local
function fi(x). The global optimization problem is formulated as [15]

min
x∈RNdx

f(x) :=
1

N

N∑
i=1

fi(xi) s.t. (A⊗ I) · x = 0, (1)

where x ∈ RN×dx stacks N local variables x := [x1; . . . ;xN ]; xi ∈ Rdx , ∀ i ∈ [N ]; ⊗ denotes
the Kronecocker product; the incidence matrix A contains the graph connectivity pattern with the
following definition: if edge e(i, j) ∈ E connects vertex i and j with i > j, thenAei = 1,Aej = −1
and Aek = 0, ∀k 6= i, j. Let us use Ni ⊂ [N ] denote the neighbors for agent i. For simplicity of
notation, the Kronecocker products are ignored in the latter analyses.

The Continuous-Time Double-Feedback System. To optimize problem (1), our approach is to
design a continuous-time feedback control system, in such a way that the system enters its stable
state if and only if the state variables of the system precisely correspond to a first-order stationary
solution of (1). Towards this end, let us use x ∈ RN×dx to denote the main state variable of the
system. Let us introduce two feedback loops, referred to as the global consensus feedback loop
(GCFL) and local computation feedback loop (LCFL), where the former incorporates the dynamics
from multi-agent interactions, while the latter helps better stabilize the system. More specifically,
these loops can be specified as below:

• (The GCFL). Let us define an auxiliary state variable v := [v1; . . . ; vN ] ∈ RNdv , with vi ∈
Rdv , ∀ i, and define y = [x;v] ∈ RN(dx+dv); define a feedback controllerGg(·;A) : RN(dx+dv) →
RN(dx+dv). Then the GCFL will use the controllerGg(·;A) to operate on y, to ensure that the agents
remain coordinated, and their local control variables remain close to consensus;

2



• (The LCFL). Let us define an auxiliary state variable z := [z1; . . . ; zN ] ∈ RNdz , with zi ∈
Rdz , ∀ i; define a set of feedback controller G`(·; fi) : Rdx+dv+dz → Rdx+dv+dz , one for each
agent i. Then each agent will utilize LCFL to operate on its local state variables xi, zi and vi, to
ensure that without interacting with the neighboring agents, its local system can be stabilized.

Figure 1: The proposed continuous-time
double-feedback control system for modeling the
decentralized optimization problem (1).

Please see Figure 1 for an illustration of the
continuous-time system mentioned above. It is
clear that the system can be described by the
following dynamics:

v̇(t) = −ηg(t) · ug,v(t)− η`(t) · u`,v(t)

ẋ(t) = −ηg(t) · ug,x(t)− η`(t) · u`,x(t) (2)
ż(t) = −η`(t) · u`,z(t).

Next, we discuss in detail how different
controllers work.

2.2 Global Consensus Feedback Loop

The GCFL performs inter-agent
communication based on the incidence matrix
A, and it controls the consensus of the global
variable y := [x;v]. Specifically, at time t, the
controller Gg(y(t);A(t)) can be further decomposed into two sub-controllers Gg,x(y(t);A(t)) and
Gg,v(y(t);A(t)), where they produce control signals for x and v, respectively, as follows:
ug(t) = [ug,x(t);ug,v(t)], where ug,x(t) := Gg,x(y(t);A(t)), ug,v(t) := Gg,v(y(t);A(t)).

After multiplied by the control gain ηg(t) > 0, the resulting signal will be combined with the output
of the LCFL, and be fed back to local controllers. Next, we present a few assumptions for the
controller Gg(·;A).

Denote the average matrix as R := 1
N 11

T . Then we have the following assumptions on Gg:

A 1 (Control Signal Direction) The output of Gg aligns with the direction that reduces the
consensus error, that is:

〈(I −R) · y, Gg(y;A)〉 ≥ Cg · ‖(I −R) · y‖2 , ∀ y,
for some consent Cg > 0. Further, the global controller is an averaging algorithm, satisfying:

〈1, Gg(y;A)〉 = 0, ∀ y, or equivalently 〈1, ug(t)〉 = 0, ∀ t.

A 2 (Linear Operator) The controller Gg is a linear operator of y, i.e.,

a1 ·Gg(y;A) + a2 ·Gg(y′;A) = Gg(a1 · y + a2 · y′;A),∀ a1, a2 ∈ R, ∀ y,y′ ∈ Rdx+dv .

Let us comment on these assumptions. First, it is easy to check that A2 holds in most of the existing
consensus algorithms. Second, A1 is also easy to satisfy. For example, when Gg(·;A) performs a
weighted averaging, we haveGg(y;A) = (I−ATWA)·y whereW is a diagonal matrix containing
the weights of the edges. It is easy to verify that,Cg is the second smallest eigenvalue of I−ATWA,
that is, Cg = 1− λ2(ATWA) where λ2(·) denotes the second largest eigenvalue [4, 1].

By using A1, following the general analysis of averaging systems [23] we can prove that the GCFL
behaves at least as expected – it will drive the agents to a consensus state. Note that the this result
does not require the linearity in Assumption 2. This assumption is still important when we analyze
the discretized system later.

2.3 The Local Computation Feedback Loop
The LCFL optimizes the local function fi(·) for each agent. More specifically, for at time t, the
ith local controller takes the local variables xi(t), vi(t), zi(t) as inputs and produces a local control
signal. To describe the system, let us first denote the local controllers for different variables as:

ui,`,x(t) := G`,x(xi(t), vi(t), zi(t); fi), ∀ i ∈ [N ],

ui,`,v(t) := G`,v(xi(t), vi(t), zi(t); fi), ∀ i ∈ [N ],

ui,`,z(t) := G`,z(xi(t), vi(t), zi(t); fi), ∀ i ∈ [N ].

3



Stacking them together, we can define the local controller G`(·; fi)’s, as well as the output signals
ui,`(t)’s, as follows:

G`(·; fi) := [G`,x(·; fi);G`,x(·; fi);G`,x(·; fi)], ∀ i ∈ [N ]

ui,`(t) := G`(·; fi) = [ui,`,x(t);ui,`,v(t);ui,`,z(t)], ∀ i ∈ [N ].

Further, we denote the concatenated local controller outputs as: u`,x(t) := [u1,`,x(t); . . . ;uN,`,x(t)],
and define u`,v(t), u`,z(t) similarly. Note that we have assumed that all the agents use the same local
controller G`(·; ·), but they are parameterized by different fi’s. After multiplied by the control gain
η`(t) > 0, the resulting signal will be combined with the output of GCFL, and be fed back to the
local controllers.

Below, we present some general assumptions on the local computation controllers. For simplicity,
we consider deterministic controllers.

A 3 (Lipschitz Smoothness) The controller is Lipschitz smooth with constant L:

‖G`(x, v, z; fi)−G`(x′, v′, z′; fi)‖ ≤ L ‖[x; v; z]− [x′; v′; z′]‖ ,
∀ i ∈ [N ], x, x′ ∈ Rdx , v, v′ ∈ Rdv , z, z′ ∈ Rdz .

A 4 (Control Signal Direction and Size) Assume that xi(t0), vi(t0) and zi(t0) are initialized
properly, and that the local controllers are designed such that the output of G`,x aligns with the
gradient∇f(x), that is, the following holds:

〈∇fi(xi(t)), ui,`,x(t)〉 ≥ α(t) · ‖∇fi(xi(t))‖2 , ∀ t ≥ t0,

where α(t) > 0 satisfies limt→∞
∫ t
τ=t0

α(τ)dτ → ∞. Further, for any given xi, vi, zi, the size
of the control signal is upped bounded by the size of the local gradient. That is, for some positive
constants Cx, Cv and Cz , the following holds:

‖ui,`,x‖ ≤ Cx · ‖∇fi(xi)‖ , ‖ui,`,v‖ ≤ Cv · ‖∇fi(xi)‖ , ‖ui,`,z‖ ≤ Cz · ‖∇fi(xi)‖ .

Let us comment on these assumptions. A3 assumes that the controller has Lipschitz smoothness,
which is easy to verify for any given realizations of the local controllers. A4 abstracts the
convergence property of the local optimizer. This assumption implies that the update direction
−ui,`,x(t) points to a direction that decreases the local objective values. Note that in this assumption,
we have assumed that xi, vi and zi are initialized properly. This qualification is needed since, in
some of the cases, improper initial values lead to non-convergence of the algorithm. For example,
for accelerated gradient descent method [24, 13], zi(t0) should be initialized as∇fi(xi(t0)).

Using A4, we can also derive the convergence property of local controllers mainly follows that of
the gradient flow algorithms; see, e.g., [25]. The result says that under A4, the LCFL behaves as
expected – the agents can at least properly optimize their local problems. Note that the above result
does not require the Lipschitz smoothness in A3. This assumption is still important when we analyze
the discretized system later.

2.4 Convergence Properties

In this subsection, we analyze the convergence properties of the continuous-time feedback control
system. Towards this end, let us define the energy function as follows:

E(x(t),v(t), z(t)) := f(x̄(t))− f? +
1

2
‖(I −R) · y(t)‖2 ,

where f? := inf f(x) denotes the optimal objective value, x̄(t) := 1
N 1

Tx(t) denotes the average
of xi(t)’s. Then we have the following characterization for the dynamics of the energy function:

Theorem 1 Assume that the derivative of the energy function E is upper bounded by:

Ė(x(t),v(t), z(t)) ≤ −γ1(t) ·

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(x̄(t))

∥∥∥∥∥
2

− γ2(t) · ‖(I −R) · y(t)‖2 , (3)

where γ1(t), γ2(t) > 0. Then the continuous-time dynamic satisfies the following:

min
t

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(x̄(t))

∥∥∥∥∥
2

+ min
t
‖(I −R) · y(t)‖2 ≤ O

(
max

{
1∫ T

t=0
γ1(t)dt

,
1∫ T

t=0
γ2(t)dt

})
.

4



(a) The discretization block
that has a switch and a
Zero-Order Hold.

(b) Discretized system using ZOH on both control loops with two
sampling time τg, τl

Figure 2: Discretization approach: a) Zero-Order Hold; b) discretized multi-agent control system.
The proof of this result is straightforward. By integrating Ė(t) from t = 0 to T , we have∫ T

t=0

γ2(t) ‖(I −R) · y(t)‖2 dt+

∫ T

t=0

γ1(t) ‖∇f(x̄(t))‖2 ≤ E(0)− E(T ),

divide both sides by
∫ T
t=0

γ1(t)dt or
∫ T
t=0

γ1(t)dt, the prove is complete.

The above result provides us with a generic condition on the dynamics of the energy function, under
which the convergence rate of the continuous-time system can be characterized. Despite being very
simple and intuitive, this result is very useful for the following two main reasons. First, it suggests
that the design of the (continuous-time) communication and computation controllers should follow
the criteria set forth by condition (3), and, preferably, with large γ1(t) and γ2(t) so that the final
convergence rate can be made faster; Second, if the continuous-time system satisfies (3), we will
show that it is possible to discretize the system so that (3) can still be satisfied, but with different γ1
and γ2, and hence slightly different convergence characterization.

By now, we have built the double feedback-loop continuous-time control system, and provided a
few basic assumptions that any reasonable (global consensus and local computation) feedback loop
should satisfy. Further, we have identified a simple sufficient condition, under which it is relatively
easy to analyze the convergence of the system (by mostly leveraging existing continuous-time
analysis techniques). Now we are ready to dive into the main technical part of this work, which
is to show that when the system is properly discretized, the resulting (discrete, and possibly mixed
discrete and continuous) system can be used to model a few classes of decentralized learning
algorithms, and they preserve the convergence behavior of their continuous-time counterpart.

3 System Discretization
In the previous section, we have mapped the decentralized optimization problem (1) to the double
feedback-loop continuous-time system. It was shown that, we can identify a sufficient condition
(3) to analyze decentralized algorithms for problem (1). Unfortunately, the analysis and results
provided therein are only valid if the control signals are updated in continuous time, while in
practice, optimization algorithms and communication protocols are implemented via discrete-time
systems. Therefore, it is critical to understand, to what extent can the generic continuous-time
analysis be extended to discrete time systems.

In this section, we discuss the impact of system discretization on the proposed double-feedback
control system. Since our continuous-time control system involves two different feedback loops
GCFL and LCFL, special attention will be given to the two loops that are discretized differently.
Interestingly, we will show that many state-of-the-art algorithms for decentralized learning can
be precisely mapped to some versions of discretized double-feedback control system, by properly
choosing a specific discretization scheme, and by specializing the global and local controllers.

3.1 Modeling the Discretization

Typically, a continuous-time system is discretized by using a switch that samples the input with
sample time τ , followed by a Zero-Order Hold (ZOH) that keeps the sampled signal as constant

5



between the consecutive sampling instances [26]; see Figure 2a for an illustration. Note that the
continuous-time system is equivalent to the case where the sampling time τ = 0 and the switch is
constantly on.

Let us begin by using such a block to discretize the proposed double-feedback continuous-time
control system. By examining Fig. 2b, we see that the discretization can happen at the two points
A and B, where the local states are about to enter the controllers. It is important to observe that,
depending on which place (or places) that the discretization blocks are implemented, and depending
on the actual sampling rate for each of the discretization block, the original continuous system can
be discretized in many different ways. In a high-level, each of these discretization scheme will
corresponds to a multi-rate control system, in which different parts of the system runs on different
sampling rates. To precisely understand the effect of such kind of multi-rate system, let us define
the sampling intervals for the GCFL and LCFL as τg and τ`, respectively.

3.2 Decentralized Algorithms as Multi-Rate Discretized Systems

In this section, we make the connection between different classes of decentralized algorithms and
different discretization patterns. For convenience, let tk denote the times at which the inputs of the
ZOHs get sampled by both the global and local controllers. Note that when the sampling interval is
zero, the corresponding ZOH samples all the time.

Case 1 (τg > 0, τ` = 0): In this case, the local updates are continuous and the global consensus
signal is updated every τg time interval. The system becomes

v̇(t) = −ηg(t) · ug,v(tk)− η`(t) · u`,v(t)
ẋ(t) = −ηg(t) · ug,x(tk)− η`(t) · u`,x(t) (4)
ż(t) = −η`(t) · u`,z(t).

By A4, we know that with only u`, the dynamic system finds a stationary point of the local problem
that ‖∇fi(xi)‖2 = 0. So with (4), the dynamic system finds a stationary point that u`+

ηg(t)
η`(t)

ug = 0,
which is the stationary solution of the following problem for each agent:

f ′i(xi(t)) := fi(xi(t)) +
ηg(t)

ηl(t)
〈ui,g(tk), yi(t)〉 .

Therefore, from t0 to t0+τg , each agent minimizes a perturbed local problem to γ(τ) accuracy. This
system has the same form as the distributed algorithms that require to solve some local problems to
a given accuracy, before any local communication steps take place; see for examples FedProx [9],
FedPD [11] and NEXT [7].

Case 2 (τg = 0, τ` > 0): In this case, the global consensus signal is continuous and the local updates
are updated every τ` time interval. The system becomes

v̇(t) = −ηg(t) · ug,v(t)− η`(t) · u`,v(tk)

ẋ(t) = −ηg(t) · ug,x(t)− η`(t) · u`,x(tk) (5)
ż(t) = −η`(t) · u`,z(tk).

Similar to Case I, between τ` time interval, the dynamic system finds the first-order stationary point
the following problem ∥∥∥∥(I −R)y +

η`(t)

ηg(t)
u`,y(tk)

∥∥∥∥2
to certain accuracy. This system has the same form as the algorithms that require to solve some

networked problems to a certain accuracy, see for example [27, 28, 12].

Case 3 (τg = τ` > 0): In this case, the system is discretized with the same sampling time. The
update of the system can be written as:

x(tk+1) = x(tk)− η′`(tk) · u`,x(tk)− η′g(tk) · ug,x(tk),

v(tk+1) = v(tk)− η′`(tk) · u`,v(tk)− η′g(tk) · ug,v(tk), (6)

z(tk+1) = z(tk)− η′g(tk) · u`,z(tk),

where η′`(tk) =
∫ tk+τg
tk

η`(t)dt, η′g(tk) =
∫ tk+τg
tk

ηg(t)dt. The above updates can be shown to be
equivalent to many existing DO algorithms, such as DGD, D2 [29], DLM, which perform one step
local update, followed by one step of communication.

6



Case τ`, τg Communication Computation Related Algorithm
I τg > 0, τl = 0 Slow Continuous NEXT [7], FedProx [9]
II τg = 0, τl > 0 Continuous Slow GPDA [28]

III τg = τl > 0 Same rate DGD [4], DGT [5]
IV τg > τl > 0 Slow Fast Scaffold [10], NIDS [30]
V τl > τg > 0 Fast Slow AGD [13], xFilter [12]

Table 1: Summary of different discretization settings, and their corresponding distributed learning algorithms.

Case 4 (τg > τl > 0): In this case, we assume that τg = Q · τl, which means that each agent
performs Q times local computation steps between two communication steps. This update strategy
has the same spirit as the class of (horizontal) FL algorithms [8].

Case 5 (τl > τg > 0): In this case, we assume that τl = K ·τg , which means that the agents perform
K times communication steps before two local computation steps. This update strategy is similar to
the line of works that are trying to achieve optimal communication complexities [12, 30].

We summarize the above discussion in Table 1 and provide some examples of the algorithms. Note
that the above discussion about relations of algorithms and discretization settings is still a bit vague,
but later in Appendix A and B, we will provide specific examples to showcase how one can precisely
map an existing algorithm into a discretization setting.

Such kinds of connections are useful in the following sense: First, it suggests that different classes
of algorithms may be rooted in the same continuous-time system, so they are likely to share some
common properties, and it is plausible that they can be covered by a single analysis framework.
Second, by properly utilizing such kinds of connections, we can develop a systematic way of
designing new, and application-specific algorithms. More specifically, we can begin by designing
and analyzing a continuous-time control system (say, with a specific controller), then choose a
desirable discretization scheme, and transfer the theoretical results to such a particular setting.
Therefore, it will be important to have a systematic way of transferring the theoretical results from
the continuous-time system to different discretization settings.

3.3 Convergence Result of Discretized Multi-Rate Systems

For a given distributed algorithm, we can first find its continuous-time counterpart, then perform
discretization based on the requirements of each part of the system. This procedure allows the new
algorithm to share some desirable properties of the original algorithm. However, the discretization
procedure will introduce instability to the system as the sampled control signal will deviate from
the continuous-time control signal. As the sampling interval increases, the deviation also increases.
Understanding how the deviations introduced by different discretization schemes affect the system is
crucial to transferring the theoretical results from the continuous-time system to discretized systems.
The following result provides a way to analyze the convergence for all different discretization
schemes.

Theorem 2 (Dynamics of E for discretized system) Under assumptions A1-A4 and the choice of
η` and ηg in Lemma 1, and consider the discretize-time system with τ` ≥ 0, τg ≥ 0. Then we have
the following:

Ė(t) ≤ −
(
γ1(t)

2
− C3(t)

)∥∥∥∥∥
N∑
i=1

∇fi(x̄(t))

∥∥∥∥∥
2

−
(
γ2(t)

2
− C4(t)

)
‖(I −R)y(t)‖2 , (7)

where C3(t) and C4(t) are some constants depending on N,Cg, L, η`(t), ηg(t), τ`, τg,K,Q.

This result indicates that by proper choice of τ`, τg,K,Q, such that
(
γ1(t)
2 − C3(t)

)
> 0

and
(
γ2(t)
2 − C4(t)

)
> 0, the discretized algorithm preserves the convergence

rate of the continuous-time system and only slows down by a constant factor
max

{
γ1(t)

/(
γ1(t)
2 − C3(t)

)
, γ2(t)

/(
γ2(t)
2 − C4(t)

)}
. The detailed convergence analyses

and discussions are omitted due to page limitation.

7



References

[1] T.-H. Chang, M. Hong, H.-T. Wai, X. Zhang, and S. Lu, “Distributed learning in the nonconvex
world: From batch data to streaming and beyond,” IEEE Signal Processing Magazine, vol. 37,
no. 3, pp. 26–38, 2020.

[2] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, methods, and
future directions,” IEEE Signal Processing Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[3] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent optimization,”
IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 48–61, 2009.

[4] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized gradient descent,” SIAM
Journal on Optimization, vol. 26, no. 3, pp. 1835–1854, 2016.

[5] K. Yuan, W. Xu, and Q. Ling, “Can primal methods outperform primal-dual methods in
decentralized dynamic optimization?” arXiv preprint arXiv:2003.00816, 2020.

[6] Q. Ling, W. Shi, G. Wu, and A. Ribeiro, “Dlm: Decentralized linearized alternating direction
method of multipliers,” IEEE Transactions on Signal Processing, vol. 63, no. 15, pp.
4051–4064, 2015.

[7] P. Di Lorenzo and G. Scutari, “Next: In-network nonconvex optimization,” IEEE Transactions
on Signal and Information Processing over Networks, vol. 2, no. 2, pp. 120–136, 2016.

[8] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon,
J. Konečnỳ, S. Mazzocchi, H. B. McMahan et al., “Towards federated learning at scale: System
design,” arXiv preprint arXiv:1902.01046, 2019.

[9] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated optimization
in heterogeneous networks,” arXiv preprint arXiv:1812.06127, 2018.

[10] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh, “Scaffold:
Stochastic controlled averaging for federated learning,” in International Conference on
Machine Learning. PMLR, 2020, pp. 5132–5143.

[11] X. Zhang, M. Hong, S. Dhople, W. Yin, and Y. Liu, “Fedpd: A federated learning framework
with optimal rates and adaptivity to non-iid data,” arXiv preprint arXiv:2005.11418, 2020.

[12] H. Sun and M. Hong, “Distributed non-convex first-order optimization and information
processing: Lower complexity bounds and rate optimal algorithms,” IEEE Transactions on
Signal processing, vol. 67, no. 22, pp. 5912–5928, 2019.

[13] H. Ye, L. Luo, Z. Zhou, and T. Zhang, “Multi-consensus decentralized accelerated gradient
descent,” arXiv preprint arXiv:2005.00797, 2020.

[14] R. Rossi and G. Savaré, “Gradient flows of non convex functionals in hilbert spaces and
applications,” ESAIM: Control, Optimisation and Calculus of Variations, vol. 12, no. 3, pp.
564–614, 2006.

[15] J. Wang and N. Elia, “A control perspective for centralized and distributed convex
optimization,” in 2011 50th IEEE conference on decision and control and European control
conference. IEEE, 2011, pp. 3800–3805.

[16] A. Sundararajan, Analysis and Design of Distributed Optimization Algorithms. The University
of Wisconsin-Madison, 2021.

[17] L. Lessard, B. Recht, and A. Packard, “Analysis and design of optimization algorithms via
integral quadratic constraints,” SIAM Journal on Optimization, vol. 26, no. 1, pp. 57–95, 2016.

[18] B. Hu and L. Lessard, “Control interpretations for first-order optimization methods,” in 2017
American Control Conference (ACC). IEEE, 2017, pp. 3114–3119.

[19] M. Muehlebach and M. Jordan, “A dynamical systems perspective on nesterov acceleration,”
in International Conference on Machine Learning, 2019, pp. 4656–4662.

[20] B. Swenson, R. Murray, H. V. Poor, and S. Kar, “Distributed gradient flow: Nonsmoothness,
nonconvexity, and saddle point evasion,” IEEE Transactions on Automatic Control, 2021.

[21] G. França, D. P. Robinson, and R. Vidal, “A dynamical systems perspective on nonsmooth
constrained optimization,” arXiv preprint arXiv:1808.04048, 2018.

8



[22] B. Swenson, R. Murray, H. V. Poor, and S. Kar, “Distributed gradient descent:
Nonconvergence to saddle points and the stable-manifold theorem,” in 2019 57th Annual
Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2019,
pp. 595–601.

[23] A. Olshevsky and J. N. Tsitsiklis, “Convergence speed in distributed consensus and averaging,”
SIAM journal on control and optimization, vol. 48, no. 1, pp. 33–55, 2009.

[24] S. Bubeck, Y. T. Lee, and M. Singh, “A geometric alternative to nesterov’s accelerated gradient
descent,” arXiv preprint arXiv:1506.08187, 2015.

[25] A. Orvieto and A. Lucchi, “Continuous-time models for stochastic optimization algorithms,”
Advances in Neural Information Processing Systems, vol. 32, 2019.

[26] B. C. Kuo, “Digital control systems,” 1980.
[27] M. Hong, D. Hajinezhad, and M.-M. Zhao, “Prox-pda: The proximal primal-dual algorithm

for fast distributed nonconvex optimization and learning over networks,” in International
Conference on Machine Learning, 2017, pp. 1529–1538.

[28] M. Hong, M. Razaviyayn, and J. Lee, “Gradient primal-dual algorithm converges to
second-order stationary solution for nonconvex distributed optimization over networks,” in
International Conference on Machine Learning. PMLR, 2018, pp. 2009–2018.

[29] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel
stochastic gradient descent,” in Proceedings of the 31st International Conference on Neural
Information Processing Systems, 2017, pp. 5336–5346.

[30] Z. Li, W. Shi, and M. Yan, “A decentralized proximal-gradient method with network
independent step-sizes and separated convergence rates,” IEEE Transactions on Signal
Processing, vol. 67, no. 17, pp. 4494–4506, 2019.

[31] S. Lu, X. Zhang, H. Sun, and M. Hong, “Gnsd: A gradient-tracking based nonconvex
stochastic algorithm for decentralized optimization,” in 2019 IEEE Data Science Workshop
(DSW). IEEE, 2019, pp. 315–321.

[32] H. Sun, S. Lu, and M. Hong, “Improving the sample and communication complexity
for decentralized non-convex optimization: Joint gradient estimation and tracking,” in
International Conference on Machine Learning. PMLR, 2020, pp. 9217–9228.

9


	Introduction
	Continuous-time System
	System Description
	Global Consensus Feedback Loop
	The Local Computation Feedback Loop
	Convergence Properties

	System Discretization
	Modeling the Discretization
	Decentralized Algorithms as Multi-Rate Discretized Systems
	Convergence Result of Discretized Multi-Rate Systems

	Discussions on the Existing Algorithms
	Existing Decentralized Algorithms as Discretized Multi-Rate Systems
	Existing Algorithms Connections

	Example: Analysis and Extensions of Gradient Tracking
	The Gradient Tracking Algorithm
	Continuous-time Analysis


