
A Discussions on the Existing Algorithms

In this section, we discuss some of the applications of the proposed framework. We first show that
by properly choosing the two controllers and the discretization scheme, the proposed framework can
be specialized to a number of popular decentralized learning algorithms. Second, we show how the
proposed framework can help us identify the relationship between different algorithms, as well as
facilitate development of new algorithms.

A.1 Existing Decentralized Algorithms as Discretized Multi-Rate Systems

We map some of the existing distributed algorithms into the discretized multi-rate system with
specific GCFL and LCFL.

First let us begin with the DO algorithms:

DGD [3]: The update step of DGD is:
x(k + 1) = Wx(k)− c∇f(x(k)),

where c > 0 is the stepsize. So it is the discretization Case III of the system with the corresponding
continuous-time controllers:

ug,x = (I −W )x, u`,x = ∇f(x).

DLM [6]: The update step of Decentralized Linearized-ADMM (DLM) algorithm is:
x(k + 1) = x(k)− η (∇f(x(k)) + c(I −W )x(k) + v(k)) ,

v(k + 1) = v(k) + c(I −W )x(k + 1).

So it is the discretization Case III of the system with the corresponding continuous-time controllers:
ug,x = c(I −W )x + v, ug,v = (I −W )x,

u`,x = ∇f(x), u`,v = 0.

Then we list some of the FL algorithms:

FedAvg [8]: The update step of FedAvg and Local GD is:

x(k + 1) =

{
x(k)− η∇f(x(k)), k mod Q 6= 0,

Rx(k)− η∇f(x(k)), k mod Q = 0.

We can see that FedAvg cannot be translated into a continuous-time system as it does not have a
persistent GCFL:

ug,x =

{
0, t 6= kτg,

(I −R)x(t)δ(t), t = kτg = 0,

where δ(t) denotes the Dirac delta function.

FedProx [9]: By assuming the local problem of FedProx is solve by gradient descent, the update
step of FedProx is:

x(k + 1) =

{
x(k)− η1∇f(x(k))− η2(x(k)− x(k0)), k mod Q 6= 0, k0 = k − (k mod Q),

Rx(k)− η1∇f(x(k))− η2(x(k)− x(k0)), k mod Q = 0, k0 = k.

So it is the discretization Case I or IV of the system with the corresponding continuous-time
controllers:

ug,x = (I −R)x, u`,x = ∇f(x).

FedPD [11]: By assuming the local problem of FedPD is solve by gradient descent, the update step
of FedPD is:

x(k + 1) = x(k)− η1(∇f(x(k)) + z(k) + η2(x(k0)−Rx(k0))), k0 = k − (k mod Q),

v(k + 1) =

{
Rx(k), k mod Q = 0

v(k), k mod Q 6= 0,

z(k + 1) =

{
z(k) + 1

η2
(x(k)− v(k)), k mod Q = 0

z(k), k mod Q 6= 0,

10



So it is the discretization Case I or IV of the system with the corresponding continuous-time
controllers:

ug,x = x− v, ug,v = v −Rx,
u`,x = ∇f(x) + z, u`,v = 0, u`,z = −(x− v).

We can observe that v is tracking Rx. Replacing v with Rx we have the following controllers:

ug,x = (I −R)x,

u`,x = ∇f(x) + z u`,z = −(I −R)x.

Finally, we give an example of the rate-optimal algorithms:

Scaffold [10]: The update step of Scaffold is:

x(k + 1) = x(k)− η1(∇f(x(k))− z(k) + v2(k0)), k0 = k − (k mod Q),

v1(k + 1) =

{
v1(k) + η2R(x(k)− v1(k)), k mod Q = 0

v1(k), k mod Q 6= 0,

v2(k + 1) =

{
v2(k)−R(v2(k)− 1

Qη1
(v1(k)− x(k))), k mod Q = 0

v2(k), k mod Q 6= 0,

z(k + 1) = z(k)− 1

Q
v2(k)− 1

Qη1
(x(k + 1)− x(k)),

So it is the discretization Case IV of the system with the corresponding continuous-time controllers:

ug,x = v2, ug,v = [R(v1 − x);Rv2 −
1

η1
R(v1 − x)],

u`,x = ∇f(x)− z, u`,v = 0, u`,z = v2 +
1

η1
ẋ.

xFilter [12]: The update step of xFilter is:

x(k + 1) = η1((1− η2)I − η2(I −W ))x(k) + (1− η1)x(k − 1) + η2η1v(k0), k0 = k − (k mod K)

v(k + 1) =

{
v(k) + (z1(k)− z2(k))− (I −W )x(k), k mod K = 0

v(k), k mod K 6= 0,

z1(k + 1) =

{
x(k)− η3∇f(x(k)), k mod K = 0

z1(k), k mod K 6= 0,

z2(k + 1) =

{
z1(k), k mod K = 0

z2(k), k mod K 6= 0,

So it is the discretization Case V of the system with the corresponding continuous-time controllers:

ug,x =
η2

2− η2
Wx, ug,v = Wx,

u`,x =
η2

2− η2
v, u`,v = (z1 − z2), u`,z = [η3∇f(x);−(z1 − z2)].

A.2 Existing Algorithms Connections

From the previous section, we have identified the controllers used by each algorithm in their
continuous-time counterparts.

We can summarize the above interpretation of the existing algorithm into Table 2. From the table,
we can see that some of the algorithms corresponds to the same continuous-time dynamic system
and the only difference in the way we discretize the system. For examples, FedPD and DLM have
the same continuous-time dynamics while DLM corresponds to Case III that GCFL and LCFL have
the same sampling intervals, while FedPD correspond to Case I,IV that τg = Qτ`; Scaffold and
xFilter also have the same continuous-time dynamics.

11



Algorithm Global Consensus Local Computation FL RO DO
DGD (I −W )y ∇f(x) FedProx – DGD
DLM c(I −W )x + v ∇f(x) FedPD – DLM

xFilter (I −W )x + v u`,v = −∇̇f(x) Scaffold xFilter –
Table 2: The summary of the controllers used in different algorithms. In GCFL and LCFL we
abstract the most important steps of the controller.

From the table we can see that there are many missing blanks. Each of these blanks represents a
new algorithm. Also, we cam combine different GCFL and LCFL to create new algorithms that are
not in this table. In the next section, we use DGT as an example to show how it can be extended to
Case I,IV and to a different GCFL.

B Example: Analysis and Extensions of Gradient Tracking

In this section, we use the well-known gradient tracking algorithm as an example to illustrate how
our proposed framework can be used in practice to analyze algorithm behavior, and to facilitate the
development of new algorithms.

B.1 The Gradient Tracking Algorithm

The iteration of the original gradient tracking algorithm is given below:
x(k + 1) = Wx(k)− cv(k),

v(k + 1) = Wv(k) +∇f(x(k + 1))−∇f(x(k)),
(8)

where c > 0 is some stepsize. Note that the algorithm only has one auxiliary consensus state v.
Under the assumption that a) W is symmetric and doubly stochastic; b) fi’s has Lipschitz gradients
and non-convex; c)

∑
i fi is lower bounded, this algorithm converges to the stationary point of the

problem at a rate of O(1/T ) [31, 32].

Our approach is to first analyze the corresponding continuous-time double-feedback system, and
apply appropriate discretization schemes and utilize the corresponding convergence results.

B.2 Continuous-time Analysis

We begin by analyzing the continuous-time counterpart of the gradient tracking algorithm. First,
notice that the gradient tracking algorithm falls into the case that τg = τ`, because communication
and computation happen at the same time-scale. By letting τg = τ` → 0, we obtain the following
continuous-time dynamic:

ẋ(t) = −ηg(t)(I −W )x(t)− η`(t)(cv(t)),

v̇(t) = −ηg(t)(I −W )v(t) + η`(t)(∇ḟ(x)).
(9)

where ηg(t) = 1, η`(t) = 1,∀ t. In the above system, the global controllers given by:
ug,x = (I −W )x(t), ug,v = (I −W )v(t),

and local update controllers given by:

u`,x = ηv(t), u`,v = −∇ḟ(x(t)),

where∇ḟ(x(t)) :=
〈
∇2f(x(t)), ẋ(t)

〉
.

Next, let us verify the assumptions A1-A4. First, it is straightforward to prove A2 with the definition
of ug . For A1, we know that W is doubly-stochastic and symmetric and the communication graph
is connected and 1 is an eigenvector of I − W . Therefore y is an averaging system with linear
convergence rate Cg equals to the eigenvalue of I −W with the second smallest magnitude.

For A3, we can verify it by the following steps:
‖G`,x(x, v; fi)−G`,x(x′, v′; fi)‖ = η ‖v − v′‖
‖G`,v(x, v; fi)−G`,x(x′, v′; fi)‖ =

∥∥〈∇2fi(x), ẋ
〉
−
〈
∇2fi(x

′), ẋ′
〉∥∥

≤ (
∥∥∇2fi(x)

∥∥+
∥∥∇2fi(x

′)
∥∥) ‖ẋ− ẋ′‖

≤ 2cLf ‖v − v′‖ ,

12



where Lf is the constant of the Lipschitz gradient. So the smoothness constant of the local controller
g` can be expressed as L = cmax{2Lf , 1}.
Finally, to check whether the LCFL satisfies A4, let us initialize v(t) = ∇f(x(t)), and assume that
ηg(t) = 0 in (9), that is, the GCFL is inactive. Then we have:

v(t+ τ) = ∇f(x(t+ τ)) (10)
ẋ(t+ τ) = −cv(t+ τ) = −c∇f(x(t+ τ)). (11)

The algorithm becomes the gradient flow algorithm that satisfies A4 [14].

13


	Introduction
	Continuous-time System
	System Description
	Global Consensus Feedback Loop
	The Local Computation Feedback Loop
	Convergence Properties

	System Discretization
	Modeling the Discretization
	Decentralized Algorithms as Multi-Rate Discretized Systems
	Convergence Result of Discretized Multi-Rate Systems

	Discussions on the Existing Algorithms
	Existing Decentralized Algorithms as Discretized Multi-Rate Systems
	Existing Algorithms Connections

	Example: Analysis and Extensions of Gradient Tracking
	The Gradient Tracking Algorithm
	Continuous-time Analysis


