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Abstract

Federated learning is a new machine learning technology that multiple clients col-
laboratively to train a global model without sharing their local data. Due to the fact
that clients have the direct control over their local models and training data, feder-
ated learning is inherently vulnerable to free-rider attacks that the malicious client
forges local model parameters to get reward without contributing sufficient local
data and computation resources. Recently, many different free-rider attacks have
been proposed. However, existing attacks haven’t a good stealth property. The
convergence property represents the convergent speed and final global model ac-
curacy. The stealth property indicates the attacker’s ability to hide its local update.
In this work, we first utilize the Ornstein-Uhlenbeck (OU) process to formalize
the evolution of local and global training processes, and analyze the geometrical
relationship of all clients’ local model updates. Then, we propose a scaled delta
attack and an advanced free-rider attack. We also prove that advanced free-rider
attack can not only ensure the convergence of the aggregated model, but also hold
the stealth property. Expriment results demonstrate that our advanced free-rider
attack is feasible and can escape from state-of-the-art defense mechanisms. Our
results show that even a highly constrained adversary can carry out the advanced
free-rider attack while simultaneously maintaining stealth under the defense strate-
gies, which highlights the vulnerability of the federated learning setting and the
need to develop effective defense strategies.

1 Introduction

Federated learning (FL) is a popular implementation of distributed stochastic optimization for large-
scale deep neural network training [1, 2, 3]. It is a multi-round strategy where multiple clients
work together to train a model under the orchestration of a central server, while preserving the
confidentiality of the local training data. To ensure clients privacy, federated learning is designed
to have no visibility into clients local data and training processes. FL systems can preserve data
privacy and reduce the costs resulting from traditional centralized machine learning frameworks.
Nowadays, more and more federated learning frameworks have been developed and deployed, such
as TensorFlow Federated Framework and Webank’s FATE.
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In recent years, the security of FL has received significant interest from both research communities
and the industry. There has been intensive work focusing on attacks and defenses for various attack
vectors, such as evasion attack, data poisoning attack and model poisoning attacks [3]. In evasion
attacks, the adversary alters the data used at inference-time. In data poisoning attacks, an adversary
mainly injects malicious data into the training dataset before the learning process starts, while the
learning process is assumed to maintain integrity [4, 5, 6]. In model poisoning attacks [7, 8], an
adversary exploits the fact that a client can directly manipulate local model update sent back to
the server. Free-rider attacks [8, 9] a new special attack method, where free-riders construct local
updates through the sharing of opportune counterfeited parameters. The free-riders may submit fake
parameters due to several reasons: 1) the adversary does not have any local data for training; 2) the
adversary wants to save local storage spaces or computation resources [10].

In this paper, we propose advanced free-rider attack where the adversary can carefully construct local
model update without being detected. We first formulate the local and global training processes of FL
with OU process. Then, we propose our scaled delta attack that holds the convergence property for
the aggregated global model but lacks a good stealth property. After that, we analyze the geometrical
relationship of all clients’ local model updates. Based on our theoretical analysis, our proposed
advanced free-rider attack with a carefully constructed noise can blur the difference between free-
riders’ local updates and other honest updates. We also conduct experiments to demonstrate the
feasibility of our attack.

Our contributions. We analyze the geometrical relationship of all local clients’ model updates in
an iid setting, that is, the evolution trend of cosine similarity for local model update, and propose
an advanced free-rider attack where the free-rider can carefully construct local model update. The
forged update has the convergence property and a good stealth property.

2 Related work

Defense strategies. Existing defense methods against training-time attacks can be summarized as
follows: 1) Byzantine-tolerant aggregation mechanism. It is an alternative aggregation mechanism
to ensure model convergence in the presence of Byzantine participants. Traditional techniques for
secure aggregation include Krum [11], GeoMed [12] and Trimmed Mean [13]. 2) Norm differ-
ence clipping. The central sever in FL system can checks the l2-norm of each local model update
returned by all clients [14]. And it clips the model updates that exceed a norm threshold. 3) Differen-
tial Privacy (DP). In recent research [15, 14], the central server can add a Gaussian noise with small
standard deviations to the global model. In addition, participant-level differential privacy can reduce
the effectiveness of the backdoor attack, but only at the cost of degrading the models performance
on its main task. 4) Cosine Similarity. Another defense [16] targets sybil attacks by measuring the
cosine similarity across the local updates and discards those that are very similar to each other. The
variant version of this method is to compute the pairwise cosine similarity between all participants
updates to distinguish the attackers local update. 5) Anomaly detection. The center server can detect
local model updates submitted by all clients through anomaly detection methods and discards the
outliers. Some cluster-based anomaly detection on multi- or high-dimensional data such as Autoen-
coder [17, 18], Deep Autoencoding Gaussian Mixture Model (DAGMM)[19] are often utilized.

3 Problem formulation

3.1 Federated learning

In a FL system, there is a central server which distributes its global model to all clients, and ag-
gregates the local updates to generate a new global model at each round. We consider a typical
SGD-based federated setting which consists of a central server and n clients C1, C2, · · · , Cn, each
with Ni local private training samples. The total number of training samples is N. At each round
t(t = 0, 1, 2...), the server distributes the current global model θ(t) to all clients. Each participant
Ci trains a new local model based on global model θ(t) , and then sends back the local update Ui(θ)
to the server. Later, the server aggregates all local updates as follows:

θ(t+ 1) = θ(t) +

n∑
i=1

Ni

N
Ui(θ). (1)
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3.2 Formalizing FL training process

The Ornstein-Uhlenbeck process definition. In FL systems, SGD algorithm [20] is an important
algorithm, which enables efficient optimization by following noisy gradients with a decreasing step
size. In this work, we follow the typical FL setting equipped with SGD algorithm. According to
recent researches [21, 22, 23, 24] SGD can be generally modeled as an OU process. The OU process
is a stationary Gauss-Markov process where drifts towards its mean function over time. Specifically,
the OU process can be described by the following stochastic differential equation:

dθt = λ(µ− θt)dt+ σdWt, (2)

where λ denotes the magnitude of the OU process and Wt denotes the standard Wiener process.
This equation means that the OU process drifts towards the mean µ with a velocity of λ and a
volatility driven by a Brownian motion with a variance σ.

Local training process as an OU process. Follow the prior discussion in [21, 24], we formulate
the local training process with SGD algorithm as an OU process. In our setting, at round t, client Ci
receives the global model θ(t) and computes the local model update Ui(θ). In gradient descent, the
loss function is L(θ;S) = 1

s

∑s
j=1 ℓj(θ), where s is the size of a mini-batch dataset S ⊆ Di, and

ℓj(θ) is the loss of a point sj ∈ S . The stochastic gradient is ∇θL(θ;S) = 1
s

∑
j∈S gi,j(θ), where

gi,j(θ) is the stochastic gradient for a data point sj . In local epoch k with a local model θi(k) and a
local learning rate γ, we can get

θi(k + 1) = θi(k)−
γ

s

∑
j∈S

gi,j(θ). (3)

The stochastic gradient is a sum of s independent, uniformly sampled contributions and the gra-
dient noise is Gaussian with variance ∝ 1

s [21]. According to the central limit theorem, we know

that ∇θL(θ;S) → N (gi(θ),
B(θ)B(θ)T

s ), where gi(θ) is a full gradient and B(θ)B(θ)T is the cor-
responding covarience matrix. According to previous discussion in [21], we assume that when θi
approaches a stationary value, B(θ) = B, which is a constant. Thus the following equation holds:

△θi = θi(k + 1)− θi(k) ≈ −γgi(θ) +
γ√
s
BN (0, I). (4)

This equation is a discretization equation of the continuous-time stochastic differential equation,

dθi = −gi(θ)dt+
γ√
s
BdWt. (5)

Assumption 1. We assume that, for the client i with a local model θi(t) that satisfies θi(t)
t→+∞−−−−→

θi. For convex model, the local model gradient at round t is close to

gi(θ) ≈ λi(θi(t)− θi). (6)

Client Ci trains a local model initiated with θ(0) and finally the model converges to θi. We assume
that the local model gradient gi(θ) can be modeled by the OU process Eq.2, which is almost propor-
tional to the distance between current local model θ(t) and convergent local model θi. Note that this
assumption is an ideal and simple OU model for the evolution of local training process.

We can replace the parameter gi(θ) in Eq. 5. Then, we can have

dθi ≈ λi(θi − θi(t))dt+
γ√
s
BdWt. (7)

Theorem 1. The local training model’s evolution can be represented by θi(t) ≈ θ(0)e−λit + (1−
e−λit)θi+

γ√
s
e−λit

∫ t

0
eλitBdWt, which satisfies E[θi(t)]

t→+∞−−−−→ θi and V ar[θi(t)]
t→+∞−−−−→ γ2B2

2λis
.

From the local training model’s evolution θi(t), we can get that in the initial round, client Ci trained
with the initial global model θ(0) converges to the local model θi with a speed of O(e−λit). The
expectation of the local model weights is θi and the variation for the convergent local model is γ2B2

2λis
,

which shows the uncertainty of the process.

Global training process as an OU process. As defined in section 3.1, the local model updates for n
clients are U1(θ), U2(θ), ..., Ui(θ), ..., Un(θ). According to [25], their observation is that when the
learning rate is sufficiently small, the effect of E steps of local updates is similar to one step update
with a larger learning rate. Therefore, we can assume that Ui(θ) ≈ dθi, that is, Ui(θ) ≈ dθi =
−gi(θ)dt+ γ√

s
BidWt. For the global training process defined in Eq.1, similar to the discretization
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equation and continuous-time stochastic differential equation illustrated in Eq.5, we can further get

dθ(t) =

n∑
i=1

Ni

N
λi(θi − θi(t))dt+

n∑
i=1

Ni

N

γ√
s
BidWt. (8)

Theorem 2. The global training model’s evolution can be represented by θ(t) ≈ θ(0)e−λt + (1 −
e−λt)θ +

∑n
i=1

Ni

N
γ√
s
e−λt

∫ t

0
Bie

λtdWt,which satisfies E[θ(t)] t→+∞−−−−→ θ and V ar[θ(t)]
t→+∞−−−−→∑n

i=1
γ2N2

i B
2
i

2λN2s
.

We define λ =
∑n

i=1
Niλi

N and θ =
∑n

i=1 Niλiθi∑n
i=1 Niλi

. The global model θ(t), initiated with θ(0),

finally converges to θ with a speed of O(e−λt). For iid setting in FL, the local data can be regarded
as samples drawn from the overall distribution that represents the overall distribution. Therefore,
we assume that the parameter λi is the same for all clients that equals to λ. We can infer that
θ =

∑n
i=1

Ni

N θi, that is, the expectation of the global model θ(t) is the weighted average of all local

optimal model, and the variation for the convergent global model is
∑n

i=1
γ2N2

i B
2
i

2λN2s .

4 Methods

4.1 Scaled delta free-rider attack

Motivation. When learning rate is small, the model update vectors in two adjacent rounds are almost
the same. Thus, we use the weighted average value of all local model updates returned by honest
clients θ(t) − θ(t − 1) as forged local update. As the model tends to converge, the local update
gradually decays and tends to zero. We try to simulate honest clients’ behavior by using the ratio of
previous two rounds’ l2-norm of local updates as the decay rate. To simulate a real global update
θ(t+ 1)− θ(t) in the next round, we can forge local update in our scaled delta attack as follows:

Uf (θ) =
∥θ(t)− θ(t− 1)∥

∥θ(t− 1)− θ(t− 2)∥ (θ(t)− θ(t− 1)). (9)

According to the disscussion in section 3.2, when the learning rate is sufficiently small, the effect
of E steps of local update is similar to one step update with a larger learning rate. Thus, Uf (θ) can
be viewed as the weighted average of all local model updates with just a one-step training. In FL
system, E = 1 makes FedAvg equivalent to SGD[25]. Therefore, our fake update could be viewed
as a global update over the whole training dataset with a one-step training.

Convergence proof. We analyze our scaled delta attack following the proof of convergence in [9].
We denote by J1 the set of honest clients and by J2 the set of m free-riders. The total number of
training samples declared by free_riders is M . At round t, the aggregated model with free-riders
could be calculated as follows:

dθ(t) ≈
∑
i∈J1

Ni

N −M
λi(θi − θi(t))dt+

∑
i∈J1

Ni

N −M

γ√
s
BidWt. (10)

Theorem 3. The scaled delta attack has comparable performances in terms of convergence
property compared to the training process involving only honest clients. We have θ(t) ≈
θ(0)e−λt + (1 − e−λt)θ +

∑
i∈J1

Ni

(N−M)
γ√
s
e−λt

∫ t

0
Bie

λtdWt, which satisfies E[θ(t)] t→+∞−−−−→ θ

and V ar[θ(t)]
t→+∞−−−−→

∑
i∈J1

γ2N2
i B

2
i

2λ(N−M)2s
.

We denote λ =
∑

i∈J1

Ni

N−M λi and θ =
∑

i∈J1
Niλiθi∑

i∈J1
Niλi

. Similar to Theorem 2, we know that the
convergence rate, the final global model and the uncertainty of the training process with free-riders
has the same form of expression as the training process with only honest clients. Our proposed
scaled delta attack has comparable convergence performance with normal FL training.

4.2 Advanced free-rider attack

The scaled delta attack hasn’t a good stealth property and could be detected easily. In this scaled
delta attack, we can obtain the weighted average update of all clients as U(θ) =

∑n
i=1

Ni

N Ui(θ)
, which is a high-dimensional vector. If we can find the relationship (e.g, cosine similarity and
l2-norm) between these local updates, we can construct a fake update similar to a real update.
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Analysis for cosine similarity of local updates. In general, the expectation of local model weights
for n clients θ1, θ2, .., θn could be viewed as a p-dimensional vector, p is the dimension of the local
model parameters after being flattened. As shown in Theorem 2, we know that the global model
weights converge to θ =

∑n
i=1

Ni

N θi in iid setting. And we denote ϵi = θi − θ, which demonstrates
the deviation between local client model and global model, which is resulted from the difference
between local datasets and whole dataset. We assume that the smallest space which contains all
n vectors is Ω, and θi is a random vector which deviates from the vector θ. For iid setting in FL,
the local data can be regarded as samples drawn from the overall distribution which represents the
overall distribution. Therefore, these n vectors θ1, θ2, .., θn could be viewed as randomly distributed
points around point θ. For client Ci, we set E(|ϵi|) = ϵ. The following theory shows the relationship
between the number of training rounds t and the cosine value of the angle generated from the local
model update vectors for any two clients.
Lemma 1. In iid setting, the cosine value between two local updates is cosβ. The relationship
between E(cosβ) and the number of training rounds t satisfies the equation: E(cosβ) ≈ C2

C2+e2λt
.

In Lemma 1, C is an introduced constant parameter that shows the multiple relationship between
two expectations, that is, E(|θ− θ(0)|) = CE(|ϵi|). When t = 0, the value of E(cosβ) ≈ 1, which
means in the initial stage of FL training, random two local updates almost have the same direction
with each other. With the training process moving forward, the value of E(cosβ) is decreasing with
a rate of O(e−λt). When the global model converges, that is, when t→∞ ,the value of E(cosβ) is
close to 0, that is, random two local updates are almost orthogonal to each other, which means that
when the model is close to convergence, differences in local model updates caused by the specificity
of local datasets will gradually appear.
Lemma 2. In iid setting, the l2-norm relationship between the local model update Ui(θ) and the

weighted average value of all local model updates U(θ) is |E(Ui(θ))|
|E(U(θ))| =

√
n2

n+(n2−n)E(cos β) . And

the vector difference between Ui(θ) and U(θ) is orthogonal to vector U(θ).

We denote U(θ) = θ(t)−θ(t−1) =
∑n

i=1
Ni
N Ui(θ), which is a high-dimensional vector constructed

by all local model updates. We also know how to simulate the expectation of cosβ for random two
vectors Ui(θ) and Uj(θ). Therefore, in the next section, we will show how to construct our advanced
free-rider attack based on Lemma 1 and Lemma 2.

For iid setting, according to previous discussion in section 4.1, we know that our fake update
Uf (θ) = ∥θ(t)−θ(t−1)∥

∥θ(t−1)−θ(t−2)∥ (θ(t) − θ(t − 1)) could be viewed as a global update over the whole
training dataset with one-step training, and approximately equal to the weighted average value of all
local model updates in the next round. Because of the difference between local datasets and whole

Algorithm 1: AdvancedAttack. The malicious client Cf

carries out the advanced free-rider attack based on global
model θ(t) received at round t and θ(t− 1) at round t− 1.

1: Parameter estimation.
2: l(t)← |E(θ(t)− θ(t− 1))|
3: l(1)← |E(θ(1)− θ(0))|
4: λ← ln t−1

√
l(t)
l(1)

5: E(cosβ) ≈ C2

C2+e2λt

6: Update generation.
7: Uf (θ) =

∥θ(t)−θ(t−1)∥
∥θ(t−1)−θ(t−2)∥ (θ(t)− θ(t− 1))

8: |φ(t)|=
√

n2

n+(n2−n)E(cos β) − 1|E(Uf (θ))|
9: Choose a fraction of parameter dimension as d

10: Add Gaussian noise |φ(t)|N (0, 1
d ) to Uf (θ)

11: Return the constructed model update Ûf (θ) to server

dataset, there exists weight divergence
between local client model and global
model. Then, we analyze and quan-
tize the weight divergence in Lemma
2. Thus, by exploiting the conclusion
that in high-dimensional spaces, ran-
dom vectors are orthogonal[26], our
advanced strategy is to add Gaus-
sian noise φ(t) satisfying |φ(t)|=√

n2

n+(n2−n)E(cos β) − 1|Uf (θ)|, which

is a simulated deviation between Uf (θ)
and a real local model update Ui(θ).
The advanced free-rider model update
is constructed by equation Ûf (θ) =
Uf (θ) + φ(t). The details of advanced
free-rider attack are shown in Algo-
rithm 1.The attacker firstly calculates
the expectations of global updates to es-
timate parameters λ and cosβ. Then it chooses a random fraction of dimensions in the scaled delta
update to add Gaussian noise, which simulate specificity of the training on local dataset.
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For highly skewed non-iid data, the local updates are naturally non-iid with each other. We cannot
find certain geometric relationship between all local updates. Our Lemma 1 and Lemma 2 cannot
be applied. However, due to the heterogeneity of local data, the local updates are spreaded in a large
space which is beneficial for a free-rider to hide its fake update. We still use the advanced attack to
carry out the experiments for non-iid setting.

Convergence proof. Similar to the proof of Eq. 10, we could have

dθ(t) ≈
∑
i∈J1

Ni

N −M
λi(θi − θi(t))dt+

∑
i∈J1

Ni

N −M

γ√
s
BidWt1 +

M

N −M
φ(t)dWt2 . (11)

Theorem 4. Our proposed advanced attack has comparable performance in terms of convergence
property compared to the training process involving only honest clients. We have θ(t) ≈ θ(0)e−λt+

(1 − e−λt)θ +
∑

i∈J1

Ni

N−M
γ√
s
e−λt

∫ t

0
Bie

λtdWt1 + M
N−M e−λt

∫ t

0
φ(t)eλtdWt2 , which satisfies

E[θ(t)]
t→+∞−−−−→ θ and V ar[θ(t)]

t→+∞−−−−→
∑

i∈J1

γ2N2
i B

2
i

2λ(N−M)2s
.

We denote λ =
∑

i∈J1

Ni

N−M λi and θ =
∑

i∈J1
Niλiθi∑

i∈J1
Niλi

. Similar to Theorem 3, we get the same
conclusion that our proposed advanced attack also have comparable convergence performance with
normal FL training.

5 Performance evaluation

The goal of our experiment is to highlight that, compared with the state of the art free-rider attacks,
our advanced free-rider attack has a good performance in terms of convergence and stealth property.
We conduct experiments on real world datasets and simulate a FL environment. The resulting model
under advanced attack has comparable performances and convergence rate with respect to the one of
the model obtained with honest clients only. Besides, the results demonstrate that in both iid and non-
iid settings, our advanced attack can stay stealthy under different indicative features. Furthermore,
we utilize DAGMM as an anomaly detection method to defense and evaluate our advanced attack.

Tasks. We evaluate our advanced free-rider attack on two image classification tasks: 1) Task1.
MNIST[27] with multi-layer perceptron(MLP)[28], 2) Task2. Fashion-MNIST[29] with convolu-
tional neural network(CNN). For each task, we maintain the same experimental setting composed
by 50 honest clients, and we set the number of free-riders to respectively 1, 50 and 150 in both iid
and non-iid setting. Each client has the same number of training samples. Details of dataset and
experimental setups are provided in the appendix.

Compared attacks. We compare latest free-rider attacks as follows: 1) Plain free-rider. It is the
simplest way to construct fake local update. The free-rider directly returns the received global model
without any local training. Since this attack is trivial for detection, we use it as a baseline strategy
for free-riders. 2) Disguised free-rider. This attack is based on additive stochastic perturbations.
Specifically, the free-rider utilizes GMM to fit a multimodal distribution forms for the local update.
3) Delta weights. This attack subtracts the current global model to the previous global model.

Features. Byzantine-tolerant aggregation mechanisms and DP-based defense methods focus on
mitigating the influence of the attacker, they don’t detect the attacker and aren’t suitable for free-
rider attacks. Thus, we only consider following three indicative features which can distinguish
free-riders: 1) Cosine similarity. We compute cosine values between other clients’ local model
updates and a randomly chosen client’s update vector. 2) L2-norm. We compute l2-norm of every
clients’ local model updates. 3) Standard eviation(STD). We compute the std value of each clients’
local model vector.

DAGMM. This is a model for unsupervised anomaly detection. The model contains two main
components: a compression network and an estimation network. the compression network performs
dimensionality reduction for input samples by a deep autoencoder, prepares their low-dimensional
representations from both the reduced space and the reconstruction error features, and feeds the
representations to the subsequent estimation network; Then, the estimate the network obtains the
feeds and predicts their energy in the Gaussian Mixture Model (GMM) framework.

Results. The experimental results for both non-iid setting of Task1 and Task2 can be found in the

Convergence and performances.
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Figure 1: Accuracy performance in iid setting of MNIST dataset
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Figure 2: Sample energy in
iid setting of MNIST dataset

As shown in Figure 1, we show the evolution of the global model’s accuracy for iid setting in three
scenarios where the number of free-riders is 1 and accounts for 50% and 75% of all clients. The
shaded blue region indicates the variability of FL model with only honest clients which is estimated
from 10 different training initialization 2.

The results indicate that, independently from the chosen free-rider attack, the resulting global models
have comparable performances compared with the global model obtained with only honest clients.
However, the convergence speed of different attacks is different. In 50% free-rider scenarios and
75% free-rider scenarios, the convergence rate of other attacks such as plain free-rider, disguised
free-rider and delta weights is significantly lower than the normal convergence rate. However, our
scaled delta and advanced free-rider attacks have comparable performances in terms of convergence
rate compared to the training process involving only honest clients. This result is also in agreement
with Theorem 3 and Theorem 4 which suggest that the accuracy and convergence rate of the final
global model is not affected by the number of free-riders.

Stealth property. In this section, we study the stealth property of various attack methods by com-
paring indicative features. Since plain free-rider attack is easy to be detected, we only compare our
attack methods with disguised free-rider and delta weights attacks.
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Figure 3: Features in iid setting of MNIST
dataset

As shown in Figure 3, we observe that the local up-
date of our advanced attack achieves stealth prop-
erty in all indicators. The other attack methods do
not have a good stealth property. Specifically, the
evolution of cosine similarity and l2-norm of our
advanced attack confirms Lemma 1 and Lemma 2.
Note that in the initial several rounds, our advanced
attack participate the training process honestly to
compute core parameters such as C which can be
used in the simulation of local update.

Anomaly detection. To defense our advanced at-
tack, we also utilize a popular anomaly detection
model DAGMM. The results of all sample energy
values are shown in Figure 2. The sample energy
values of free-riders are hidden in the energy value area of other honest clients in iid setting, which
is difficult to distinguish by DAGMM. The results indicate that our advanced attack is powerful and
can escape from the cluster-based anomaly detection techniques.

6 Conclusion and future work

In this paper, we propose scaled delta attack which can guarantee a convergent global model. Then
we also present our advanced free-rider attack by improving the stealth property of scaled delta
attack. Detailed experiments validate that our advanced free-rider attack has good performance
and maintain stealth against existing defense strategies. For future work, we would like to study
how to carry out our free-rider attacks in a real-world setting(such as partial client participation,
secure aggregation[30], etc.), and investigate more defense strategies to protect FL systems against
advanced free-rider attack.

2In our experiment for MNIST, the maximum global epoch for the training process is 300 due to our limited
computation resources
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