
A Details of dataset and experimental setups

We implement the proposed scaled delta and advanced free-rider attacks in PyTorch. Our simulated
FL environment runs on our personal computer. The main function works as the central server. The
participants include 50 honest clients and a certain number of free-riders including 1, 50 and 150.
All clients conduct local training for E epochs over their local datasets and then return local updates
by using API. The central server then conducts FedAvg algorithm and distribute the aggregated
model in next round. As for models, we use a MLP model for MNIST dataset and CNN model for
Fashion-MNIST dataset.

MNIST . For the case where n clients participate in the training process, we assign 60000 samples
to training and 10000 samples to testing and create two settings: an iid dataset (MNIST iid) where
each client randomly selects 60000/n samples from the whole data set as the local data set without
replacement, and a non-iid dataset (MNIST non-iid), where for each digit we create two shards with
60000/2n training samples, and allocate 2 shards for each client.

Fashion-MNIST . We study a CNN model for classification problem on the dataset of Fashion-
MNIST. Here we adpot the same data division scheme as that of MNIST. Detailed information of
the CNN architecture are summarized in TableA

We test federated learning with 5 local epochs using SGD optimization with learning rate γ = 0.001
for MNIST (iid and non-iid), and γ = 0.002 for Fashion-MNIST , and batch size of 128. All clients
participate in each round of training process.

Algorithm 2: The datasets used and their associated learning models and hyper-parameters.

Parameter Shape Layer hyper-parameter

layer1.conv1.weight 1× 20× 5× 5 stride:1, padding:0

layer1.conv1.bias 20 N/A

pooling.max N/A kernel size:2;stride:2

layer2.conv2.weight 20× 50× 5× 5 stride:1;padding:0

layer2.conv2.bias 50 N/A

pooling.max N/A kernel size:2;stride:2

layer3.fc1.weight 800× 500 N/A

layer3.fc1.bias 500 N/A

layer4.fc2.weight 500× 10 N/A

layer4.fc2.bias 10 N/A
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B Additional experimental results

B.1 Experiments for non-iid setting of MNIST with MLP

0 20 40 60 80 100
Round

20

40

60

80

100
A

cc
ur

ac
y

Single free rider

No attack Free plain Disguised Delta Scaled delta Advanced

0 50 100 150 200 250 300
Round

70

80

90

100
50% free riders

0 50 100 150 200 250 300
Round

70

80

90

100
75% free riders

iid

Figure 4: Accuracy performance in non-iid setting of MNIST dataset
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Figure 5: Features in non-iid setting of MNIST dataset
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Figure 6: Sample energy in non-iid setting of MNIST dataset
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B.2 Experiments for Fashion-MNIST with CNN

B.2.1 Convergence and Performances.
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Figure 7: Accuracy performance of Fashion-MNIST dataset

B.2.2 Stealth Property.
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Figure 8: Features in iid setting of Fashion-MNIST dataset
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Figure 9: Features in non-iid setting of Fashion-MNIST dataset

B.2.3 Anomaly Detection.
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Figure 10: Sample energy for Fashion-MNIST dataset
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C Complete Proofs

C.1 Proof of Theorem 1

Proof. The continuous-time stochastic differential equation is:

dθi = −gi(θ)dt+
γ√
s
BdWt, (12)

We can replace the parameter gi(θ) in equation 12 according to assump 1. Then we can have

dθi ≈ λi(θi − θi(t))dt+
γ√
s
BdWt. (13)

The differential equation is solved:

θi(t) = e−λit[C0 +

∫ t

0

λiθie
λitdt︸ ︷︷ ︸

A

+
γ√
s

∫ t

0

B(t)eλitdWt︸ ︷︷ ︸
B

] (14)

In the initial round, the client receives the global model θ(0) as its local model. Thus, we have
θi(0) = θ(0) and C0 = θ(0).

We study (A) : ∫ t

0

λiθie
λitdt = (eλit − 1)θi. (15)

Moreover, we could obtain a specific equation which describes the evolution of local training model
weights. The solution of this equation is

θi(t) ≈ θ(0)e−λit + (1− e−λit)θi +
γ√
s
e−λit

∫ t

0

eλitBdWt. (16)

Asymptotic convergence of B The asymptotic properties of the stochastic integral B follows from
the general properties of Itos integrals. For any constant L, we have

E[Le−λit

∫ t

0

eλitdWt]
t→+∞−−−−→ 0 (17)

V ar[Le−λit

∫ t

0

eλitdWt] = L2e−2λit

∫ t

0

e2λitdWt =
L2

2λi
(1− e−2λit)

t→+∞−−−−→ L2

2λi
. (18)

According to Eq. 14, we finally conclude that

E[θi(t)]
t→+∞−−−−→ θi,

V ar[θi(t)]
t→+∞−−−−→ γ2B2

2λis
.

(19)

C.2 Proof of Theorem 2

Proof. The aggregation at the server level follows:

θ(t+ 1) = θ(t) +

n∑
i=1

Ni

N
Ui(θ). (20)

As illustrated in Section3.2, the local model update for client i follows:

Ui(θ) ≈ dθi = −gi(θ)dt+
γ√
s
BidWt. (21)
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Similar to the discretization equation and continuous-time stochastic differential equation illustrated
in Eq. 12, we could further get

θ(t+ 1)− θ(t) =

n∑
i=1

Ni

N
Ui(θ),

dθ(t) ≈ −
n∑

i=1

Ni

N
gi(θ)dt+

n∑
i=1

Ni

N

γ√
s
BidWt

=

n∑
i=1

Niλi

N
(θi − θi(t))dt+

n∑
i=1

Ni

N

γ√
s
BidWt.

(22)

Client Ci receives the global model θ(t) as initial model parameters from the central server at round
t, that is, θi(t) = θ(t). We define λ =

∑n
i=1

Niλi

N and θ =
∑n

i=1 Niλiθi∑n
i=1 Niλi

. And we have

dθ(t) ≈ λ(θ − θ(t)) +

n∑
i=1

Ni

N

γ√
s
BidWt. (23)

We note that this equation has the same form with the one in proof C.1. The solution is

θ(t) ≈ θ(0)e−λt + (1− e−λt)θ +

n∑
i=1

Ni

N

γ√
s
e−λt

∫ t

0

Bie
λtdWt. (24)

E[θ(t)]
t→+∞−−−−→ θ,

V ar[θ(t)]
t→+∞−−−−→

n∑
i=1

γ2N2
i B

2
i

2λN2s
.

(25)

C.3 Proof of Theorem 3

Proof. We denote by J1 the set of honest clients and by J2 the set of m free-riders. The total number
of training samples declared by free_riders is M . At round t, the aggregated model with free-riders
could be calculated as follows:

θ(t+ 1) = θ(t) +
∑

J1∪J2

Ni

N
Ui(θ)

= θ(t) +
∑
i∈J1

Ni

N
Ui(θ) +

∑
i∈J2

Ni

N
Uf (θ)

= θ(t) +
∑
i∈J1

Ni

N
Ui(θ) +

M

N
(
∥θ(t)− θ(t− 1)∥
∥θ(t− 1)− θ(t− 2)∥

(θ(t)− θ(t− 1)))

(26)

According to the discussion in Section 4.1, we could obtain

θ(t+ 1)− θ(t) ≈ ∥θ(t)− θ(t− 1)∥
∥θ(t− 1)− θ(t− 2)∥

(θ(t)− θ(t− 1)) (27)

Rearrange this equation, we could have

θ(t+ 1)− θ(t) =
∑
i∈J1

Ni

N −M
Ui(θ),

dθ(t) ≈ −
∑
i∈J1

Ni

N −M
gi(θ)dt+

∑
i∈J1

Ni

N −M

γ√
s
BidWt.

=
∑
i∈J1

Ni

N −M
λi(θi − θi(t))dt+

∑
i∈J1

Ni

N −M

γ√
s
BidWt.

(28)
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We note that this equation has the same form with the one in proof C.2 The solution is

θ(t) ≈ θ(0)e−λt + (1− e−λt)θ +
∑
i∈J1

Ni

N −M

γ√
s
e−λt

∫ t

0

Bie
λtdWt. (29)

E[θ(t)]
t→+∞−−−−→ θ,

V ar[θ(t)]
t→+∞−−−−→

∑
i∈J1

γ2N2
i B

2
i

2λ(N −M)2s
,

(30)

where λ =
∑

i∈J1

Ni

N−M λi and θ =
∑

i∈J1
Niλiθi∑

i∈J1
Niλi

C.4 Proof of Lemma 1

Proof. According to the discussion in section 3.2 and our assumption 1, at round t, the local model
θi(t) is initiated with the global model θ(t), thus we could get

E(Ui(θ)) ≈ E(dθi)

= E(−gi(θ)dt+
γ√
s
BidWt)

= γλ(θi − θ(t)).

(31)

As shown in Eq. 24, we could infer that

E(θi − θ(t)) ≈ E(θi − θ(0)e−λt − (1− e−λt)θ)

= E(θi − θ + (θ − θ(0))e−λt)

= E(ϵi + (θ − θ(0))e−λt)

(32)

where we define ϵi = θi − θ. Then we could compute the expection of cosine value β for random
two local updates Ui(θ) and Uj(θ) as follows:

E(cosβ) =
E(Ui(t)) · E(Uj(t))

|E(Ui(t))| · |E(Uj(t))|

≈ (ϵi + (θ − θ(0))eλt) · (ϵj + (θ − θ(0))e−λt)∣∣∣(ϵi + (θ − θ(0))e−λt
∣∣∣ · ∣∣∣(ϵj + (θ − θ(0))e−λt

∣∣∣ .
=

ϵi · ϵj + (ϵi + ϵj) · (θ − θ(0))e−λt + ((θ − θ(0))e−λt)2∣∣∣(ϵi + (θ − θ(0))e−λt
∣∣∣ ∣∣∣(ϵj + (θ − θ(0))e−λt

∣∣∣ .

(33)

As illustrated in Section 4.2, ϵi, ϵj are two random values which demonstrate the difference between
local client models and global model, which is resulted from the difference between local datasets
and whole dataset. According to the discussion in [26], they provided a precise characterization of
the folklore that all high-dimensional random vectors are almost always nearly orthogonal to each
other. Therefore, we could have

ϵi · ϵj = 0. (34)

θ(0) is the random initialization parameter of the model. Similarly, we can get

(ϵi + ϵj) · (θ − θ(0))e−λt = 0. (35)
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We assume that |E(θ − θ(0))|= C|E(ϵi)|, where C is an introduced parameter. Finally we could
conclude that:

E(cosβ) =
ϵi · ϵj + (ϵi + ϵj) · (θ − θ(0))e−λt + ((θ − θ(0))e−λt)2∣∣∣(ϵi + (θ − θ(0))e−λt

∣∣∣ ∣∣∣(ϵj + (θ − θ(0))e−λt
∣∣∣

=
(θ − θ(0))2e−2λt

ϵ2 + (θ − θ(0))2e−2λt

=
C2

C2 + e2λt
.

(36)

C.5 Proof of Lemma 2

Proof. According to previous Eq. 20, Eq. 31 and Eq. 32, we now could calculate the l2-norm of
expecation for global update θ(t)− θ(t− 1) as follows:

|E(θ(t)− θ(t− 1))| = |E(−
n∑

i=1

Ni

N
Ui(θ))|

≈ |E(
n∑

i=1

Ni

N
γλi(θi − θ(t− 1)))|

(37)

For iid setting, we assume that λi is the same for all clients, which is equal to λ. The expected num-
ber of local training samples declared by client Ci is equal to N/n,that is,E(Ni). The expectation l2-
norm value of the local model update returned by client Ci at round t is |U |, i.e. |E(Ui(θ))|= |U |,So

|E(θ(t)− θ(t− 1))| = γλ

n
|E(

n∑
i=1

(θi − θ(t− 1))|

=
γλ

n

√√√√E((

n∑
i=1

(θi − θ(t− 1)))2)

=
γλ

n

√√√√ n∑
i=1

n∑
j=1

E(θi − θ(t− 1))E(θj − θ(t− 1))

=
1

n

√
n+ (n2 − n)E(cosβ)|U |.

(38)

Thus we could compute

|E(Ui(θ))|
|E(θ(t)− θ(t− 1))|

=

√
n2

n+ (n2 − n)E(cosβ)
. (39)

According to the previous analysis 4.1, the weighted average of all local updates U(θ) = θ(t) −
θ(t− 1) could be viewed as a global update over the whole training dataset with a one-step training,
by assumption 1. We could get U(θ) = γλ(θ−θ(t−1)). We could compute the difference between
U(θ) and a real local update Ui(θ) as follows.

E(Ui(θ)− U(θ)) ≈ E(γλ(θi − θ(t− 1))− γλ(θ − θ(t− 1)))

= E(γλ(θi − θ))

= E(γλϵi).

(40)

Then, we could obtain:
E(Ui(θ)) = E(U(θ)) + E(γλϵi). (41)

According to the Eq. 24, we have E(U(θ)) = (θ̄ − θ(0))(e−(λ−1)t − e−λt). In Eq.35, the vector
θ̄ − θ(0) is orthogonal to vector ϵi, that is, U(θ) is orthogonal to vector ϵi.
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C.6 Proof of Theorem 4

Proof. Similar to the proof of Theorem 3, we could obtain

θ(t+ 1) = θ(t) +

n∑
i=1

Ni

N
Ui(θ)

= θ(t) +
∑
i∈J1

Ni

N
Ui(θ) +

M

N

∑
i∈J2

Ûf (θ)

= θ(t) +
∑
i∈J1

Ni

N
Ui(θ) +

M

N
(
∥θ(t)− θ(t− 1)∥
∥θ(t− 1)− θ(t− 2)∥

(θ(t)− θ(t− 1)) + φ(t))dWt2

= θ(t) +
∑
i∈J1

Ni

N
Ui(θ) +

M

N

∥θ(t)− θ(t− 1)∥
∥θ(t− 1)− θ(t− 2)∥

(θ(t)− θ(t− 1)) +
M

N
φ(t)dWt2 .

(42)

Rearrange this equation, we could have

θ(t+ 1)− θ(t) =
∑
i∈J1

Ni

N −M
Ui(θ) +Mφ(t)dWt2

dθ(t) ≈
∑
i∈J1

Ni

N −M
Ui(θ) +Mφ(t)dWt2

= −
∑
i∈J1

Ni

N −M
gi(θ)dt+

∑
i∈J1

Ni

N −M

√
γ

s
BidWt1 +

M

N −M
φ(t)dWt2 .

(43)

According to our assumption 1, we know that

dθ(t) ≈
∑
i∈J1

Ni

N −M
λi(θi − θi(t))dt+

∑
i∈J1

Ni

N −M

γ√
s
BidWt1 +

M

N −M
φ(t)dWt2 . (44)

The solution for this equation is

θ(t) ≈ θ(0)e−λt + (1− e−λt)θ +
∑
i∈J1

Ni

N −M

γ√
s
e−λt

∫ t

0

Bie
λtdWt1 +

M

N −M
e−λt

∫ t

0

φ(t)eλtdWt2︸ ︷︷ ︸
A

.

(45)
We note that this equation differs from the one in Eq.28 for the last term only.

We study (A):

Because |E(φ(t))|=
√

n2

n+(n2−n)E(cos β) − 1|E(Uf (θ))|, we know that (Uf (θ))| decays at a rate

of O(e−λt) and
√

n2

n+(n2−n)E(cos β) − 1 is bounded. There exists a constant p which satisfies

|E(φ(t))|=
√

n2

n+(n2−n)E(cos β) − 1|E(Uf (θ))|≤ pe−λt, then we could obtain

V ar[
M

N −M
e−λt

∫ t

0

φ(t)eλtdWt2 ] ≤
M2p2

(N −M)2
e−2λt

∫ t

0

dWt2 (46)

M2p2

(N −M)
2 e

−2λt

∫ t

0

dWt2
t→+∞−−−−→ 0 (47)
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Similarly, we could obtain the expectation and variation value for the global model as follows:

E[θ(t)]
t→+∞−−−−→ θ̃,

V ar[θ(t)]
t→+∞−−−−→

∑
i∈J1

γ2N2
i B

2
i

2λ(N −M)2s
,

(48)

where λ =
∑

i∈J1

Ni

N−M λi and θ =
∑

i∈J1
Niλiθi∑

i∈J1
Niλi

. We could infer that the expectation of the global

model θ(t) is the average of the expecation of all local model updates from honest clients, and the
variation value is

∑
i∈J1

γ2N2
i B

2
i

2λ(N−M)2s
. Therefore, our advanced free-rider attack also guarantees the

convergence property.
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