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Abstract

We propose a simple, yet effective defense against poisoning attacks in Federated
Learning. Our approach transforms the update gradients from local nodes into
a matrix containing the rankings of local nodes across all model parameter di-
mensions. We then distinguish the malicious nodes from the benign nodes with
key characteristics of the rank domain, specifically, the mean and standard devi-
ation of a node’s parameter rankings. Under mild conditions, we prove that our
approach is guaranteed to detect all malicious nodes under typical Byzantine poi-
soning attacks with no prior knowledge or history about the participating nodes.
The effectiveness of our proposed approach is further confirmed by experiments
on two classic datasets. Compared to the state-of-art methods in the literature for
defending Byzantine attacks, our approach is unique in its way of identifying the
malicious nodes by ranking and its robustness to effectively defense a wide range
of attacks.

1 Introduction

FL departs from conventional centralized learning by allowing multiple participating nodes to learn
on a local collection of training data, before each respective node’s updates are sent to a global coor-
dinator for aggregation. With an aggregation of multiple nodes, the resulting model observes greater
performance than if each node was to learn on their local subset only. FL presents two advantages,
increased privacy for contributing nodes as local data is not communicated to the coordinator, and
reductions of computation by the global node with computation offloaded to contributors.

However, malicious actors in the collaborative process may seek to poison the performance of the
global model, to reduce the output performance of the model [Chen et al., 2017, Fang et al., 2020,
Tolpegin et al., 2020b]. A Byzantine attack aims to devastate the performance of the global model by
manipulating the gradient values of malicious nodes in a coordinated manner. In the literature, there
are two typical defense strategies: malicious node detection and robust learning. Malicious node de-
tection defenses by detecting malicious nodes and removing them from the aggregation [Blanchard
et al., 2017, Guerraoui et al., 2018, Li et al., 2020, So et al., 2021]. Robust learning [Blanchard et al.,
2017, Yin et al., 2018, Guerraoui et al., 2018, Fang et al., 2020], however, withstands a proportion of
malicious nodes and defenses by reducing the negative impacts of the malicious nodes via various
robust learning methods [Wu et al., 2020b, Xie et al., 2019, 2020, Cao et al., 2021].

In this paper, we focus on defensing Byzantine attacks via malicious node detection. In the liter-
ature, there are efforts of the same vein. Blanchard et al. [2017] propose a defense referred to as
Krum that treats local nodes whose update vector is too far away from the aggregated barycenter
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Figure 1: An Overview of MANDERA

as malicious nodes and precludes them from the downstream aggregation. Guerraoui et al. [2018]
propose Bulyan, a process that performs aggregation on subsets of node updates (by iteratively leav-
ing each node out) to find a set of nodes with the most aligned updates given an aggregation rule.
These methods share a common element: detection is based on the node updates directly. However,
usually the different dimensions of the node updates remain quite different in their range of values
and follow very different distributions. This phenomena makes it challenging to precisely detect
malicious nodes directly based on the node updates, as a few dimensions often dominate the final
result.

We propose to resolve this critical problem from a novel perspective. Instead of working on the node
updates directly, we propose to extract information about malicious nodes indirectly by transform-
ing the node updates from numeric gradient values to the rank domain. Compared to the original
numeric gradient values, whose distribution is difficult to model, the ranks are much easier to handle
both theoretically and practically. Moreover, as ranks are scale-free, we no longer need to worry
about the scale difference across different update dimensions. We proved under mild conditions that
the first two moments of the transformed rank vectors carry key information to detect the malicious
nodes under a wide range of Byzantine attacks. Based on these theoretical results, a highly efficient
method called MANDERA is proposed to separate the malicious nodes from the benign ones by
clustering all local nodes into two groups based on the moments of their rank vectors. With the
assumption that malicious nodes are the minority in the node pool, we can simply treat all nodes in
the smaller cluster as malicious nodes and remove them from the aggregation.

The contributions of this work are as follows. (1) We propose the first algorithm leveraging the
rank domain of model updates to detect malicious nodes (Figure 1). (2) We provide theoretical
guarantee for the detection of malicious nodes based on the rank domain under Byzantine attacks.
(3) Our method does not assume knowledge on the number of malicious nodes, which is required
in the learning process of prior methods. (4) We experimentally demonstrate the effectiveness and
robustness of our defense on Byzantine attacks, including Gaussian attack, Sign Flipping attack and
Zero Gradient attack, in addition to a more subtle Label Flipping data poisoning attack. (5) An
experimental comparison between MANDERA and a collection of alternative robust aggregation
techniques, including Krum [Blanchard et al., 2017], Trimmed Mean [Yin et al., 2018, Fang et al.,
2020], Median [Yin et al., 2018, Fang et al., 2020], Bulyan [Guerraoui et al., 2018], are provided.

2 Defense Formalization

2.1 Notations

Suppose there are n local nodes in the federated learning framework, where n1 nodes are benign
nodes whose indices are denoted by Ib and the other n0 = n − n1 nodes are malicious nodes
whose indices are denoted by Im. The training model is denoted by f(θ,D), where θ ∈ Rp×1 is
a p-dimensional parameter vector of interest and D is the data matrix. Denote the message matrix
received from all local nodes by the central server asM ∈ Rn×p, where each row denotes a message
vector from a single local node, with Mi,: being the message received from node i. For a benign
node i ∈ Ib, let Di be the data matrix on it, we typically have Mi,: = ∂f(θ,Di)

∂θ . A malicious node
i ∈ Im, however, tends to attack the learning system by manipulatingMi,: in some way.

Given a vector of real numbers a ∈ Rp×1, define its ranking vector as b = Rank(a) ∈
perm{1, · · · , p}, where the ranking operator Rank maps the vector a to its permutation
space perm{1, · · · , p} which is the set of all the permutations of {1, · · · , p}. For example,
Rank(1.1,−2, 3.2) = (2, 3, 1). With the Rank operator, we can transfer the message matrix
M to a ranking matrix R by replacing its column M:,j by the corresponding ranking vector
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R:,j = Rank(M:,j). Further define

ei ,
1

p

p∑
j=1

Ri,j and vi ,
1

p

p∑
j=1

(Ri,j − ei)2

to be the mean and variance of Ri,:, respectively. As we will show in later subsections, we can
judge whether node i is a malicious node based on (ei, vi) under various attacking patterns. In the
following, we will highlight the behaviour of the benign nodes first, and then discuss the behaviour
of malicious nodes and their interactions with the benign nodes under various Byzantine attacks
respectively.

2.2 Behaviour of benign nodes

As the behaviour of benign nodes does not depend on the type of Byzantine attack, we can study the
statistical properties of (ei, vi) for a benign node i ∈ Ib before the specification of a concrete attack
type.

For any benign node i, the message generated for jth parameter is

Mi,j =
1

Ni

Ni∑
l=1

∂f(θ,Di,l)

∂θj
, (1)

where Ni is the sample size used by node i to compute the gradient andDi,l denotes the lth sample
of it. Assuming that Di,ls are independent and identically distributed (IID) samples drawn from a
data distribution D, equation 1 tells us that Mi,j is the sample mean of IID random variables, i.e.,
{∂f(θ,Di,l)

∂θj
}Ni

l=1. Thus, according to the Central Limit Theorem, Mi,j follows a Gaussian distribu-
tion asymptotically with the increase of Ni. The lemma below summarizes the result formally.
Lemma 1. Assuming that data samples on each benign node i ∈ Ib are IID samples from a distri-
bution D, and let σ2

j = Var(
∂f(θ,Di,l)

∂θj
) <∞, we have

Mi,j →d N
(
µj , σ

2
j /Ni

)
, 1 ≤ j ≤ p, (2)

where µj = E(
∂f(θ,Di,l)

∂θj
).

2.3 Behaviour of malicious node under the Gaussian attack

We provide the definition of the Gaussian attack in Appendix C.1. Considering that limn1→∞mb =
µj a.s., according to the Kolmogorov Strong Law of Large Numbers (KSLLN), the distribution of
Mi,j can be well approximated by a Gaussian distribution centered at µj when n1 is reasonably
large. The lemma 2 provides the details.
Lemma 2. Under the same assumption as in Lemma 1, we have for each malicious node i ∈ Im
under the Gaussian attack

Mi,j →d N (µj ,Σj,j) , 1 ≤ j ≤ p. (3)

Lemma 1 and Lemma 2 tell us that for each parameter dimension j, {Mi,j}ni=1 are independent
Gaussian random variables with the same mean (i.e, µj) but different variances (i.e., σ2

j /Ni or Σj,j)
under the Gaussian attack. Due to the symmetry of Gaussian distribution, it is straightforward to see
that E(Ri,j) = n+1

2 , 1 ≤ i ≤ n, 1 ≤ j ≤ p. Moreover, the exchangeability of benign nodes and
the exchangeability of malicious nodes tell us that for each parameter dimension j, there exist two
positive constants s2

b,j and s2
m,j such that

Var(Ri,j) = s2
b,j , ∀ i ∈ Ib, and Var(Ri,j) = s2

m,j , ∀ i ∈ Im.

Further assume that Ri,j’s are independent of each other, thus ei = 1
p

∑p
j=1Ri,j is the sum of

independent random variables with a common mean. Thus, according to the KSLLN, we know that
ei converges to a constant almost surely, which in turn indicates that vi also converge some constant
almost surely.

The theorem below summarizes the results formally, with the detailed proof provided in Appendix
D.
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Theorem 1. Assuming {Ri,j}1≤j≤p are independent of each other, under the Gaussian attack, we
have

lim
p→∞

ei =
n+ 1

2
a.s., (4)

lim
p→∞

vi = s̄2
b · I(i ∈ Ib) + s̄2

m · I(i ∈ Im) a.s., (5)

where I(·) stands for the indicator function, s̄2
b = 1

p

∑p
j=1 s

2
b,j and s̄2

m = 1
p

∑p
j=1 s

2
m,j .

Considering that s̄2
b = s̄2

m if and only if {Σj,j}pj=1 falls into a lower dimensional manifold whose
measurement is zero under the Lebesgue measure on Rp, we have P (s̄2

b = s̄2
m) = 0 if the attacker

specifies the Gaussian variance Σj,j’s arbitrarily in the Gaussian attack. Thus, Theorem 1 in fact
suggests that the benign nodes and the malicious nodes are different on the value of vi, and thus
provides a guideline to detect the malicious nodes.

Due to the following reasons, The independence assumption in Theorem 1 is a mild condition that
can be easily satisfied in practice. First, for a benign node i ∈ Ib,Mi,j andMi,k are often nearly in-
dependent, as the correlation between two model parameters θj and θk is often very week in a larger
deep neural network with a huge number of parameters. To verify the statement, we implemented
independence tests for 100000 column pairs randomly chosen from the message matrix M gener-
ated from the MNIST data. Distribution of the p-values of these tests are demonstrated in Figure 4
of Appendix E via a histogram, which is close to a uniform distribution, indicating that Mi,j and
Mi,k are indeed nearly independent in practice. Second, even some Mi,j and Mi,k shows strong
correlation, magnitude of the correlation would be reduced greatly during the transformation from
M toR, as the final ranking Ri,j also depends on many other factors.

2.4 Malicious node detection for sign flipping attack

From SF’s definition (Appendix C.2), a malicious node i’s update message under the SF attack is

Mi,: = −rmb = − r

n1

∑
k∈Ib

Mk,:. (6)

For fixed {Mk,:}k∈Ib ,Mi,: is also a fixed vector without randomness, as it is a deterministic function
of {Mk,:}k∈Ib . On the other hand, however, we can also treat Mi,: as a random vector, since the
randomness of {Mk,:}k∈Ib can be transferred to Mi,: via the link function in equation 6. In fact, for
any parameter dimension j, considering that Mk,j →d N

(
µj , σ

2
j /Nk

)
for any k ∈ Ib according to

Lemma 1, it is straightforward to see thatMi,j = − r
n1

∑
k∈Ib Mk,j can also be well approximated

by a Gaussian distribution. The lemma below summarizes the result formally.

Lemma 3. Under the sign flipping attack, for each malicious node i ∈ Im and any parameter
dimension j, we have Mi,j = − r

n1

∑
k∈Ib Mk,j is a deterministic function of {Mk,j}k∈Ib , whose

limiting distribution is
Mi,j →d N

(
µj(r), σ

2
j (r)

)
, 1 ≤ j ≤ p, (7)

where µj(r) = −rµj , σ2
j (r) =

r2·σ2
j

n1·N̄b
, and N̄b = n1∑

k∈Ib

1
Nk

is the harmonic mean of {Nk}k∈Ib .

Lemma 1 and Lemma 3 tells us that for each parameter dimension j, the distribution of {Mi,j}ni=1

is a mixture of Gaussian components {N
(
µj , σ

2
j /Ni

)
}i∈Ib centered at µj plus a point mass located

at µj(r) = −rµj . If Ni’s are reasonably large, variances σ2
j /Ni’s would be very close to zero,

and the probability mass of the mixture distribution would concentrate to two local centers µj and
µj(r) = −rµj , one for the benign nodes and the other one for the malicious nodes. This intuition
provides us the guidance to identify the malicious nodes in this attack pattern. Transforming to the
rank domain, the above intuition leads to different behavior patterns of the benign nodes and the
malicious nodes in the rank matrix R, which in turn result in different limiting behavior of (ei, vi)
for the benign and malicious nodes. The theorem below summarizes the results formally, with the
detailed proof provided in Appendix G.
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Theorem 2. Define p+ ,
∑p
j=1 I(ED∼D ≥ 0) =

∑p
j=1 I(µj ≥ 0) as the number of dimensions

which have a non-negative expectation. Let Nmin = min{N1, · · · , Nn}. Under the sign flipping
attack, we have,

lim
p→∞

lim
Nmin→∞

ei = āb · I(i ∈ Ib) + ām · I(i ∈ Im), a.s. (8)

lim
p→∞

lim
Nmin→∞

vi = v̄b · I(i ∈ Ib) + v̄m · I(i ∈ Im), a.s. (9)

where āb = n+n0+1
2 − n0

p+
p , ām = n1

p+
p + n0+1

2 , v̄b = β0 + β1p+ + β2p
2
+ , v̄m =

p+(p−p+)n2
1

p2 ,

β0 =
7n2+7n2

0+10nn0+2n+2n0−1
12 , β1 = n0

p (2n+ 3n0 + 2) and β2 = −n
2
0

p2 .

Considering that āb = ām if and only if p+ = p
2 , and v̄b = v̄m if and only if p+ is the root of

a specific quadratic equation, the probability of (āb, v̄b) = (ām, v̄m) is close to zero. Such a phe-
nomenon suggests that we can detect the malicious nodes based on the moments (ei, vi) to defense
the sign flipping attack as well. Noticeably, the limit behaviour of ei and vi does not dependent on
the specification of r, which defines the sign flipping attack. It is totally understandable once we
realize that with the variance of Mi,j shrinks to zero with Ni goes to infinity for a benign node i,
any difference between µj and µj(r) would result in the same rank vectorR:,j in the rank domain.

2.5 Malicious node detection for zero gradient attack

The ZG attack defined in Appendix C.3 is a special case of sign flipping attack by specifying r = n1

n0
.

Since the conclusions of Theorem 2 keep unchanged for different specifications of r as we have
discussed, we have the following corollary for zero gradient attack.
Corollary 1. Under the zero gradient attack, ei’s and vi’s follow exactly the same limiting be-
haviours as described in Theorem 2.

2.6 MANDERA

Theorem 1, 2 and Corollary 1 imply that, under these three attacks (Gaussian attack, zero gradient
attack and sign flipping attack), the variance of a benign node is different from that of a malicious
node. At the same time, the variances of any two benign nodes or two malicious nodes are asymp-
totically identical. Malicious nodes are guaranteed to be detected by a clustering algorithm. Based
on this, we propose MAlicious Node DEtection via RAnking (MANDERA) to detect the malicious
nodes, whose workflow is detailed in Algorithm 1.

Algorithm 1 Malicious node detection via ranking (MANDERA)
Input: DataM .

1: Convert the message dataM to ranking dataR by applying Rank operator.
2: Compute mean and standard deviation of each row of R, and denote them as e and s respec-

tively;
3: Run a clustering algorithm (here, we use K-means) to (e, s) with 2 groups. Denote the classifi-

cation results as C.
Output: Classification C.

Remark. MANDERA can be applied to either a single epoch or multiple epochs. For a single
Epoch, the data will be the message matrix received from a single epoch. For multiple Epochs, the
data M would be the combined message matrix from multiple epochs. By default, the experiments
below all use single epoch to detect the malicious nodes. In Algorithm 1, we only implement a
clustering algorithm on a nodes’ mean and standard deviation. However, higher order moments can
be used to improve MANDERA.

3 Experiments

We evaluate the efficacy in detecting malicious nodes within the federated learning framework with
the use of two Datasets. The first is the Fashion-MNIST dataset [Xiao et al., 2017], a dataset of
60,000 and 10,000 training and testing samples respectively divided into 10 classes of apparel. The
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Figure 2: Classification performance of our proposed approach MANDERA under four types of
attack for CIFAR-10 data. GA: Gaussian attack; ZG: Zero-gradient attack; SF: Sign-flipping; and
LF: Label-flipping. The boxplot bounds the 25th (Q1) and 75th (Q3) percentile, with the central line
representing the 50th quantile (median). The end points of the whisker represent the Q1-1.5(Q3-Q1)
and Q3+1.5(Q3-Q1) respectively.

seconds is CIFAR-10 [Krizhevsky et al., 2009], a dataset of 60,000 small object images also contain-
ing 10 object classes. In these experiments we mainly adopt implementations of Byzantine attacks
released by [Wu et al., 2020b,a] and the label flipping attack from [Tolpegin et al., 2020b,a]. In our
experiments, we set Σ = 30I for the Gaussian attack and u = 3 for the sign flipping attack, where
I is the identity matrix. For all experiments we fix n = 100 participating nodes, of which a variable
number of nodes are poisoned |n0| ∈ {5, 10, 15, 20, 25, 30}. The training process is run until 25
epochs have elapsed. We have described the structure of these networks in Appendix A.

3.1 Malicious node detection by MANDERA

We test the performance of MANDERA on the update gradients of a model under attack, in this
section, MANDERA acts as an observer without intervening in the learning process to identify
malicious nodes with a set of gradients from a single epoch. Each configuration of 25 training
epochs, with a given number of malicious nodes was repeated 20 times. Figure 2 demonstrates the
classification performance (Metrics defined in Appendix B) of MANDERA with different settings
of participating malicious nodes and the four poisoning attacks of Guassian Attack (GA), Zero
Gradient attack (ZG), Sign Flipping attack (SF) and the Label Flipping attack (LF).

While we have formally demonstrated the efficacy of MANDERA in accurately detecting poten-
tially malicious nodes participating in the federated learning process. In practice, to leverage an
unsupervised K-means clustering algorithm, we must also identify the correct group of nodes as the
malicious group. Our strategy is to identify the group with the most exact gradients, or otherwise
the smaller group (we regard a system with over 50% of their nodes compromised as having larger
issues than just poisoning attacks) 1.

From Figure 5 in the Appendix, it is immediately evident that the recall of the malicious nodes for
the Byzantine attacks is exceptional, however on occasion benign nodes have also been misclassified
as malicious under a SF, and to a lesser extent the ZG attack for both datasets. On all attacks, in
the presence of more malicious nodes, the recall of malicious nodes trends down. As for the data
poisoning attack of LF, it is consistently more difficult to detect, however we note that the LF attack
has a more subtle influence on the model in contrast to the impact of Byzantine attacks.

1We acknowledge that more informed approachs to selecting the malicious cluster can be tested in future
work, e.g. Figure 5 notes a lower variation of rank variance compared to benign nodes. This could enable more
robust means of selecting the malicious group, and enabling selection of malicious groups larger than 50%.
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(b) FASHION-MNIST dataset
Figure 3: Model Accuracy at each epoch of training, each line of the curve represents a different
defense against the poisoning attacks.

3.2 MANDERA for defending against poisoning attacks

In this section we encapsulate MANDERA into a module prior to the the aggregation step, MAN-
DERA has the sole objective of identifying malicious nodes, and excluding their updates from the
global aggregation step. Each configuration of 25 training epochs, a given poisoning attack, defense
method, and a given number of malicious nodes was repeated 10 times. We compare MANDERA
against 4 other robust aggregation defense methods, Krum [Blanchard et al., 2017], Bulyan [Guer-
raoui et al., 2018], Trimmed Mean [Yin et al., 2018] and Median [Yin et al., 2018]. Of which the
first 2 abandon an assumed number of malicious nodes, and the latter 2 only aggregate robustly.

From Figure 3, it is observed that MANDERA performs about the same as the best performing
defense mechanisms, close to the performance of a model not under attack. MANDERA’s accuracy
is observed to vary slightly under the LF attack on fashion data with 30 malicious nodes, this is
consistent with the larger accuracy ranges previously observed in Figure 2b.

4 Future Works and Conclusion

As with any proposed defense, attackers may attempt to craft gradients that achieve a similar poison-
ing effect, whilst preserving the ranking distribution of their submitted gradients. The rank domain
inherently discards information such as distance between two consecutively ranked node parame-
ters, this information could be used by said attacker to increase the anomalous gradient (to just below
the next value) without it’s rank changing. There exists the possibility of performing MANDERA
in differentially private or secure FL, with the use of private ranking algorithms. While we have
provided results for Byzantine attacks and the subtler label flipping attack, it remains to be seen the
effectiveness of MANDERA on more advanced poisoning techniques like GAN-based poisoning or
Evasion attacks. In conclusion, we have theoretically proven guarantees and experimentally shown
efficacy in the use of ranking algorithms for the detection of malicious nodes performing poison-
ing attacks against federated learning. Our proposed method MANDERA, is able to achieve high
detection accuracies and maintain a model accuracy on par with other seminal, high performing de-
fense mechanisms, but with 3 notable advantages. First, provable guarantees for the use of ranking
to detect Gaussian, Zero Gradient and Sign Flipping attacks. Next, faster detection with the use of
ranking algorithms. Finally, the MANDERA defense does not need a prior estimation of the number
of poisoned nodes. In this work we demonstrate how the rank domain can be useful in applications
to defend against malicious actors.
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